BsPhysX.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. #include "BsPhysX.h"
  2. #include "PxPhysicsAPI.h"
  3. #include "BsPhysXMaterial.h"
  4. #include "BsPhysXMesh.h"
  5. #include "BsPhysXRigidbody.h"
  6. #include "BsPhysXBoxCollider.h"
  7. #include "BsPhysXSphereCollider.h"
  8. #include "BsPhysXPlaneCollider.h"
  9. #include "BsPhysXCapsuleCollider.h"
  10. #include "BsPhysXMeshCollider.h"
  11. #include "BsTaskScheduler.h"
  12. #include "BsTime.h"
  13. #include "Bsvector3.h"
  14. using namespace physx;
  15. namespace BansheeEngine
  16. {
  17. struct PHYSICS_INIT_DESC
  18. {
  19. float typicalLength = 1.0f;
  20. float typicalSpeed = 9.81f;
  21. Vector3 gravity = Vector3(0.0f, -9.81f, 0.0f);
  22. bool initCooking = true; // TODO: Disable this for Game build
  23. float timeStep = 1.0f / 60.0f;
  24. };
  25. class PhysXAllocator : public PxAllocatorCallback
  26. {
  27. public:
  28. void* allocate(size_t size, const char*, const char*, int) override
  29. {
  30. void* ptr = bs_alloc_aligned16((UINT32)size);
  31. PX_ASSERT((reinterpret_cast<size_t>(ptr) & 15) == 0);
  32. return ptr;
  33. }
  34. void deallocate(void* ptr) override
  35. {
  36. bs_free_aligned16(ptr);
  37. }
  38. };
  39. class PhysXErrorCallback : public PxErrorCallback
  40. {
  41. public:
  42. void reportError(PxErrorCode::Enum code, const char* message, const char* file, int line) override
  43. {
  44. {
  45. const char* errorCode = nullptr;
  46. UINT32 severity = 0;
  47. switch (code)
  48. {
  49. case PxErrorCode::eNO_ERROR:
  50. errorCode = "No error";
  51. break;
  52. case PxErrorCode::eINVALID_PARAMETER:
  53. errorCode = "Invalid parameter";
  54. severity = 2;
  55. break;
  56. case PxErrorCode::eINVALID_OPERATION:
  57. errorCode = "Invalid operation";
  58. severity = 2;
  59. break;
  60. case PxErrorCode::eOUT_OF_MEMORY:
  61. errorCode = "Out of memory";
  62. severity = 2;
  63. break;
  64. case PxErrorCode::eDEBUG_INFO:
  65. errorCode = "Info";
  66. break;
  67. case PxErrorCode::eDEBUG_WARNING:
  68. errorCode = "Warning";
  69. severity = 1;
  70. break;
  71. case PxErrorCode::ePERF_WARNING:
  72. errorCode = "Performance warning";
  73. severity = 1;
  74. break;
  75. case PxErrorCode::eABORT:
  76. errorCode = "Abort";
  77. severity = 2;
  78. break;
  79. case PxErrorCode::eINTERNAL_ERROR:
  80. errorCode = "Internal error";
  81. severity = 2;
  82. break;
  83. case PxErrorCode::eMASK_ALL:
  84. default:
  85. errorCode = "Unknown error";
  86. severity = 2;
  87. break;
  88. }
  89. StringStream ss;
  90. switch(severity)
  91. {
  92. case 0:
  93. ss << "PhysX info (" << errorCode << "): " << message << " at " << file << ":" << line;
  94. LOGDBG(ss.str());
  95. break;
  96. case 1:
  97. ss << "PhysX warning (" << errorCode << "): " << message << " at " << file << ":" << line;
  98. LOGWRN(ss.str());
  99. break;
  100. case 2:
  101. ss << "PhysX error (" << errorCode << "): " << message << " at " << file << ":" << line;
  102. LOGERR(ss.str());
  103. BS_ASSERT(false); // Halt execution on debug builds when error occurrs
  104. break;
  105. }
  106. }
  107. }
  108. };
  109. class PhysXEventCallback : public PxSimulationEventCallback
  110. {
  111. void onConstraintBreak(PxConstraintInfo* constraints, PxU32 count) override { /* Do nothing */ }
  112. void onWake(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  113. void onSleep(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  114. void onTrigger(PxTriggerPair* pairs, PxU32 count) override
  115. {
  116. for (PxU32 i = 0; i < count; i++)
  117. {
  118. const PxTriggerPair& pair = pairs[i];
  119. PhysX::ContactEventType type;
  120. bool ignoreContact = false;
  121. switch ((UINT32)pair.status)
  122. {
  123. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  124. type = PhysX::ContactEventType::ContactBegin;
  125. break;
  126. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  127. type = PhysX::ContactEventType::ContactStay;
  128. break;
  129. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  130. type = PhysX::ContactEventType::ContactEnd;
  131. break;
  132. default:
  133. ignoreContact = true;
  134. break;
  135. }
  136. if (ignoreContact)
  137. continue;
  138. PhysX::TriggerEvent event;
  139. event.trigger = (Collider*)pair.triggerShape->userData;
  140. event.other = (Collider*)pair.otherShape->userData;
  141. event.type = type;
  142. gPhysX()._reportTriggerEvent(event);
  143. }
  144. }
  145. void onContact(const PxContactPairHeader& pairHeader, const PxContactPair* pairs, PxU32 count) override
  146. {
  147. for (PxU32 i = 0; i < count; i++)
  148. {
  149. const PxContactPair& pair = pairs[i];
  150. PhysX::ContactEventType type;
  151. bool ignoreContact = false;
  152. switch((UINT32)pair.events)
  153. {
  154. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  155. type = PhysX::ContactEventType::ContactBegin;
  156. break;
  157. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  158. type = PhysX::ContactEventType::ContactStay;
  159. break;
  160. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  161. type = PhysX::ContactEventType::ContactEnd;
  162. break;
  163. default:
  164. ignoreContact = true;
  165. break;
  166. }
  167. if (ignoreContact)
  168. continue;
  169. PhysX::ContactEvent event;
  170. event.colliderA = (Collider*)pair.shapes[0]->userData;
  171. event.colliderB = (Collider*)pair.shapes[1]->userData;
  172. event.type = type;
  173. PxU32 contactCount = pair.contactCount;
  174. const PxU8* stream = pair.contactStream;
  175. PxU16 streamSize = pair.contactStreamSize;
  176. if (contactCount > 0 && streamSize > 0)
  177. {
  178. PxU32 contactIdx = 0;
  179. PxContactStreamIterator iter((PxU8*)stream, streamSize);
  180. stream += ((streamSize + 15) & ~15);
  181. const PxReal* impulses = reinterpret_cast<const PxReal*>(stream);
  182. PxU32 hasImpulses = (pair.flags & PxContactPairFlag::eINTERNAL_HAS_IMPULSES);
  183. while (iter.hasNextPatch())
  184. {
  185. iter.nextPatch();
  186. while (iter.hasNextContact())
  187. {
  188. iter.nextContact();
  189. ContactPoint point;
  190. point.position = fromPxVector(iter.getContactPoint());
  191. point.separation = iter.getSeparation();
  192. point.normal = fromPxVector(iter.getContactNormal());
  193. if (hasImpulses)
  194. point.impulse = impulses[contactIdx];
  195. else
  196. point.impulse = 0.0f;
  197. event.points.push_back(point);
  198. contactIdx++;
  199. }
  200. }
  201. }
  202. gPhysX()._reportContactEvent(event);
  203. }
  204. }
  205. };
  206. class PhysXCPUDispatcher : public PxCpuDispatcher
  207. {
  208. public:
  209. void submitTask(PxBaseTask& physxTask) override
  210. {
  211. // Note: Banshee's task scheduler is pretty low granularity. Consider a better task manager in case PhysX ends
  212. // up submitting many tasks.
  213. // - PhysX's task manager doesn't seem much lighter either. But perhaps I can at least create a task pool to
  214. // avoid allocating them constantly.
  215. auto runTask = [&]() { physxTask.run(); physxTask.release(); };
  216. TaskPtr task = Task::create("PhysX", runTask);
  217. TaskScheduler::instance().addTask(task);
  218. }
  219. PxU32 getWorkerCount() const override
  220. {
  221. return (PxU32)TaskScheduler::instance().getNumWorkers();
  222. }
  223. };
  224. PxFilterFlags PhysXFilterShader(PxFilterObjectAttributes attr0, PxFilterData data0, PxFilterObjectAttributes attr1,
  225. PxFilterData data1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
  226. {
  227. if (PxFilterObjectIsTrigger(attr0) || PxFilterObjectIsTrigger(attr1))
  228. {
  229. pairFlags = PxPairFlag::eTRIGGER_DEFAULT;
  230. return PxFilterFlags();
  231. }
  232. UINT64 groupA = *(UINT64*)&data0.word0;
  233. UINT64 groupB = *(UINT64*)&data1.word0;
  234. bool canCollide = gPhysics().isCollisionEnabled(groupA, groupB);
  235. if (!canCollide)
  236. return PxFilterFlag::eSUPPRESS;
  237. pairFlags = PxPairFlag::eCONTACT_DEFAULT;
  238. return PxFilterFlags();
  239. }
  240. static PhysXAllocator gPhysXAllocator;
  241. static PhysXErrorCallback gPhysXErrorHandler;
  242. static PhysXCPUDispatcher gPhysXCPUDispatcher;
  243. static PhysXEventCallback gPhysXEventCallback;
  244. PhysX::PhysX()
  245. {
  246. PHYSICS_INIT_DESC input; // TODO - Make this an input parameter.
  247. PxTolerancesScale scale;
  248. scale.length = input.typicalLength;
  249. scale.speed = input.typicalSpeed;
  250. mFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gPhysXAllocator, gPhysXErrorHandler);
  251. mPhysics = PxCreateBasePhysics(PX_PHYSICS_VERSION, *mFoundation, scale);
  252. PxRegisterArticulations(*mPhysics);
  253. if (input.initCooking)
  254. {
  255. // Note: PhysX supports cooking for specific platforms to make the generated results better. Consider
  256. // allowing the meshes to be re-cooked when target platform is changed. Right now we just use the default value.
  257. PxCookingParams cookingParams(scale);
  258. mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, cookingParams);
  259. }
  260. PxSceneDesc sceneDesc(scale); // TODO - Test out various other parameters provided by scene desc
  261. sceneDesc.gravity = toPxVector(input.gravity);
  262. sceneDesc.cpuDispatcher = &gPhysXCPUDispatcher;
  263. sceneDesc.filterShader = PhysXFilterShader;
  264. sceneDesc.simulationEventCallback = &gPhysXEventCallback;
  265. sceneDesc.flags = PxSceneFlag::eENABLE_ACTIVETRANSFORMS;
  266. mScene = mPhysics->createScene(sceneDesc);
  267. mSimulationStep = input.timeStep;
  268. mDefaultMaterial = mPhysics->createMaterial(0.0f, 0.0f, 0.0f);
  269. }
  270. PhysX::~PhysX()
  271. {
  272. mScene->release();
  273. if (mCooking != nullptr)
  274. mCooking->release();
  275. mPhysics->release();
  276. mFoundation->release();
  277. }
  278. void PhysX::update()
  279. {
  280. mUpdateInProgress = true;
  281. float nextFrameTime = mLastSimulationTime + mSimulationStep;
  282. float curFrameTime = gTime().getTime();
  283. if(curFrameTime < nextFrameTime)
  284. {
  285. // TODO - Interpolate rigidbodies but perform no actual simulation
  286. return;
  287. }
  288. float simulationAmount = curFrameTime - mLastSimulationTime;
  289. while (simulationAmount >= mSimulationStep) // In case we're running really slow multiple updates might be needed
  290. {
  291. // Note: Consider delaying fetchResults one frame. This could improve performance because Physics update would be
  292. // able to run parallel to the simulation thread, but at a cost to input latency.
  293. // TODO - Provide a scratch buffer for the simulation (use the frame allocator, but I must extend it so it allocates
  294. // on a 16 byte boundary).
  295. mScene->simulate(mSimulationStep);
  296. mScene->fetchResults(true);
  297. // Update rigidbodies with new transforms
  298. PxU32 numActiveTransforms;
  299. const PxActiveTransform* activeTransforms = mScene->getActiveTransforms(numActiveTransforms);
  300. for (PxU32 i = 0; i < numActiveTransforms; i++)
  301. {
  302. Rigidbody* rigidbody = static_cast<Rigidbody*>(activeTransforms[i].userData);
  303. const PxTransform& transform = activeTransforms[i].actor2World;
  304. // Note: Make this faster, avoid dereferencing Rigidbody and attempt to access pos/rot destination directly,
  305. // use non-temporal writes
  306. rigidbody->_setTransform(fromPxVector(transform.p), fromPxQuaternion(transform.q));
  307. }
  308. simulationAmount -= mSimulationStep;
  309. }
  310. // TODO - Consider extrapolating for the remaining "simulationAmount" value
  311. mLastSimulationTime = curFrameTime;
  312. mUpdateInProgress = false;
  313. triggerEvents();
  314. }
  315. void PhysX::_reportContactEvent(const ContactEvent& event)
  316. {
  317. mContactEvents.push_back(event);
  318. }
  319. void PhysX::_reportTriggerEvent(const TriggerEvent& event)
  320. {
  321. mTriggerEvents.push_back(event);
  322. }
  323. void PhysX::triggerEvents()
  324. {
  325. CollisionData data;
  326. for(auto& entry : mTriggerEvents)
  327. {
  328. data.collider = entry.other;
  329. switch (entry.type)
  330. {
  331. case ContactEventType::ContactBegin:
  332. entry.trigger->onCollisionBegin(data);
  333. break;
  334. case ContactEventType::ContactStay:
  335. entry.trigger->onCollisionStay(data);
  336. break;
  337. case ContactEventType::ContactEnd:
  338. entry.trigger->onCollisionEnd(data);
  339. break;
  340. }
  341. }
  342. auto notifyContact = [&](Collider* obj, Collider* other, ContactEventType type,
  343. const Vector<ContactPoint>& points, bool flipNormals = false)
  344. {
  345. data.collider = other;
  346. data.contactPoints = points;
  347. if(flipNormals)
  348. {
  349. for (auto& point : data.contactPoints)
  350. point.normal = -point.normal;
  351. }
  352. SPtr<Rigidbody> rigidbody = obj->getRigidbody();
  353. if(rigidbody != nullptr)
  354. {
  355. switch (type)
  356. {
  357. case ContactEventType::ContactBegin:
  358. rigidbody->onCollisionBegin(data);
  359. break;
  360. case ContactEventType::ContactStay:
  361. rigidbody->onCollisionStay(data);
  362. break;
  363. case ContactEventType::ContactEnd:
  364. rigidbody->onCollisionEnd(data);
  365. break;
  366. }
  367. }
  368. else
  369. {
  370. switch (type)
  371. {
  372. case ContactEventType::ContactBegin:
  373. obj->onCollisionBegin(data);
  374. break;
  375. case ContactEventType::ContactStay:
  376. obj->onCollisionStay(data);
  377. break;
  378. case ContactEventType::ContactEnd:
  379. obj->onCollisionEnd(data);
  380. break;
  381. }
  382. }
  383. };
  384. for (auto& entry : mContactEvents)
  385. {
  386. notifyContact(entry.colliderA, entry.colliderB, entry.type, entry.points, true);
  387. notifyContact(entry.colliderB, entry.colliderA, entry.type, entry.points, false);
  388. }
  389. mTriggerEvents.clear();
  390. mContactEvents.clear();
  391. }
  392. SPtr<PhysicsMaterial> PhysX::createMaterial(float staticFriction, float dynamicFriction, float restitution)
  393. {
  394. return bs_shared_ptr_new<PhysXMaterial>(mPhysics, staticFriction, dynamicFriction, restitution);
  395. }
  396. SPtr<PhysicsMesh> PhysX::createMesh(const MeshDataPtr& meshData, PhysicsMeshType type)
  397. {
  398. return bs_shared_ptr_new<PhysXMesh>(meshData, type);
  399. }
  400. SPtr<Rigidbody> PhysX::createRigidbody(const HSceneObject& linkedSO)
  401. {
  402. return bs_shared_ptr_new<PhysXRigidbody>(mPhysics, mScene, linkedSO);
  403. }
  404. SPtr<BoxCollider> PhysX::createBoxCollider(const Vector3& extents, const Vector3& position,
  405. const Quaternion& rotation)
  406. {
  407. return bs_shared_ptr_new<PhysXBoxCollider>(mPhysics, position, rotation, extents);
  408. }
  409. SPtr<SphereCollider> PhysX::createSphereCollider(float radius, const Vector3& position, const Quaternion& rotation)
  410. {
  411. return bs_shared_ptr_new<PhysXSphereCollider>(mPhysics, position, rotation, radius);
  412. }
  413. SPtr<PlaneCollider> PhysX::createPlaneCollider(const Vector3& position, const Quaternion& rotation)
  414. {
  415. return bs_shared_ptr_new<PhysXPlaneCollider>(mPhysics, position, rotation);
  416. }
  417. SPtr<CapsuleCollider> PhysX::createCapsuleCollider(float radius, float halfHeight, const Vector3& position,
  418. const Quaternion& rotation)
  419. {
  420. return bs_shared_ptr_new<PhysXCapsuleCollider>(mPhysics, position, rotation, radius, halfHeight);
  421. }
  422. SPtr<MeshCollider> PhysX::createMeshCollider(const Vector3& position, const Quaternion& rotation)
  423. {
  424. return bs_shared_ptr_new<PhysXMeshCollider>(mPhysics, position, rotation);
  425. }
  426. PhysX& gPhysX()
  427. {
  428. return static_cast<PhysX&>(PhysX::instance());
  429. }
  430. }