ImageBasedLighting.bslinc 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  2. mixin ImageBasedLighting
  3. {
  4. mixin ReflectionCubemapCommon;
  5. code
  6. {
  7. // Arbitrary limit, increase if needed
  8. #define MAX_PROBES 512
  9. // Note: Size must be multiple of largest element, because of std430 rules
  10. struct ReflProbeData
  11. {
  12. float3 position;
  13. float radius;
  14. float3 boxExtents;
  15. float transitionDistance;
  16. float4x4 invBoxTransform;
  17. uint cubemapIdx;
  18. uint type; // 0 - Sphere, 1 - Box
  19. float2 padding;
  20. };
  21. [internal]
  22. TextureCube gSkyReflectionTex;
  23. SamplerState gSkyReflectionSamp;
  24. [internal]
  25. TextureCubeArray gReflProbeCubemaps;
  26. SamplerState gReflProbeSamp;
  27. [internal]
  28. Texture2D gAmbientOcclusionTex;
  29. SamplerState gAmbientOcclusionSamp;
  30. [internal]
  31. Texture2D gSSRTex;
  32. SamplerState gSSRSamp;
  33. [internal]
  34. Texture2D gPreintegratedEnvBRDF;
  35. SamplerState gPreintegratedEnvBRDFSamp;
  36. StructuredBuffer<ReflProbeData> gReflectionProbes;
  37. #if USE_COMPUTE_INDICES
  38. groupshared uint gReflectionProbeIndices[MAX_PROBES];
  39. #endif
  40. #if USE_LIGHT_GRID_INDICES
  41. Buffer<uint> gReflectionProbeIndices;
  42. #endif
  43. [internal]
  44. cbuffer ReflProbeParams
  45. {
  46. uint gReflCubemapNumMips;
  47. uint gNumProbes;
  48. uint gSkyCubemapAvailable;
  49. uint gUseReflectionMaps;
  50. uint gSkyCubemapNumMips;
  51. float gSkyBrightness;
  52. }
  53. float getSphereReflectionContribution(float normalizedDistance)
  54. {
  55. // If closer than 60% to the probe radius, then full contribution is used.
  56. // For the other 40% we smoothstep and return contribution lower than 1 so other
  57. // reflection probes can be blended.
  58. // smoothstep from 1 to 0.6:
  59. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  60. // return t * t * (3.0 - 2.0 * t);
  61. float t = saturate(2.5 - 2.5 * normalizedDistance);
  62. return t * t * (3.0 - 2.0 * t);
  63. }
  64. float3 getLookupForSphereProxy(float3 originWS, float3 dirWS, float3 centerWS, float radius)
  65. {
  66. float radius2 = radius * radius;
  67. float3 originLS = originWS - centerWS;
  68. float a = dot(originLS, dirWS);
  69. float dist2 = a * a - dot(originLS, originLS) + radius2;
  70. float3 lookupDir = dirWS;
  71. [flatten]
  72. if(dist2 >= 0)
  73. {
  74. float farDist = sqrt(dist2) - a;
  75. lookupDir = originLS + farDist * dirWS;
  76. }
  77. return lookupDir;
  78. }
  79. float getDistBoxToPoint(float3 pt, float3 extents)
  80. {
  81. float3 d = max(max(-extents - pt, 0), pt - extents);
  82. return length(d);
  83. }
  84. float3 getLookupForBoxProxy(float3 originWS, float3 dirWS, float3 centerWS, float3 extents, float4x4 invBoxTransform, float transitionDistance, out float contribution)
  85. {
  86. // Transform origin and direction into box local space, where it is unit sized and axis aligned
  87. float3 originLS = mul(invBoxTransform, float4(originWS, 1)).xyz;
  88. float3 dirLS = mul(invBoxTransform, float4(dirWS, 0)).xyz;
  89. // Get distance from 3 min planes and 3 max planes of the unit AABB
  90. // float3 unitVec = float3(1.0f, 1.0f, 1.0f);
  91. // float3 intersectsMax = (unitVec - originLS) / dirLS;
  92. // float3 intersectsMin = (-unitVec - originLS) / dirLS;
  93. float3 invDirLS = rcp(dirLS);
  94. float3 intersectsMax = invDirLS - originLS * invDirLS;
  95. float3 intersectsMin = -invDirLS - originLS * invDirLS;
  96. // Find nearest positive (along ray direction) intersection
  97. float3 positiveIntersections = max(intersectsMax, intersectsMin);
  98. float intersectDist = min(positiveIntersections.x, min(positiveIntersections.y, positiveIntersections.z));
  99. float3 intersectPositionWS = originWS + intersectDist * dirWS;
  100. float3 lookupDir = intersectPositionWS - centerWS;
  101. // Calculate contribution
  102. //// Shrink the box so fade out happens within box extents
  103. float3 reducedExtents = extents - float3(transitionDistance, transitionDistance, transitionDistance);
  104. float distToBox = getDistBoxToPoint(originLS * extents, reducedExtents);
  105. float normalizedDistance = distToBox / transitionDistance;
  106. // If closer than 70% to the probe radius, then full contribution is used.
  107. // For the other 30% we smoothstep and return contribution lower than 1 so other
  108. // reflection probes can be blended.
  109. // smoothstep from 1 to 0.7:
  110. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  111. // return t * t * (3.0 - 2.0 * t);
  112. float t = saturate(3.3333 - 3.3333 * normalizedDistance);
  113. contribution = t * t * (3.0 - 2.0 * t);
  114. return lookupDir;
  115. }
  116. float3 gatherReflectionRadiance(float3 worldPos, float3 dir, float roughness, float alpha, float3 specularColor, uint probeOffset, uint numProbes)
  117. {
  118. if(gUseReflectionMaps == 0)
  119. return specularColor;
  120. float mipLevel = mapRoughnessToMipLevel(roughness, gReflCubemapNumMips);
  121. float3 output = 0;
  122. [loop]
  123. for(uint i = 0; i < numProbes; i++)
  124. {
  125. if(alpha < 0.001f)
  126. break;
  127. uint probeIdx = gReflectionProbeIndices[probeOffset + i];
  128. ReflProbeData probeData = gReflectionProbes[probeIdx];
  129. float3 probeToPos = worldPos - probeData.position;
  130. float distToProbe = length(probeToPos);
  131. float normalizedDist = saturate(distToProbe / probeData.radius);
  132. if(distToProbe <= probeData.radius)
  133. {
  134. float3 correctedDir;
  135. float contribution = 0;
  136. if(probeData.type == 0) // Sphere
  137. {
  138. correctedDir = getLookupForSphereProxy(worldPos, dir, probeData.position, probeData.radius);
  139. contribution = getSphereReflectionContribution(normalizedDist);
  140. }
  141. else if(probeData.type == 1) // Box
  142. {
  143. correctedDir = getLookupForBoxProxy(worldPos, dir, probeData.position, probeData.boxExtents, probeData.invBoxTransform, probeData.transitionDistance, contribution);
  144. }
  145. float4 probeSample = gReflProbeCubemaps.SampleLevel(gReflProbeSamp, float4(correctedDir, probeData.cubemapIdx), mipLevel);
  146. probeSample *= contribution;
  147. output += probeSample.rgb * alpha;
  148. alpha *= (1.0f - contribution);
  149. }
  150. }
  151. if(gSkyCubemapAvailable > 0)
  152. {
  153. float skyMipLevel = mapRoughnessToMipLevel(roughness, gSkyCubemapNumMips);
  154. float4 skySample = gSkyReflectionTex.SampleLevel(gSkyReflectionSamp, dir, skyMipLevel) * gSkyBrightness;
  155. output += skySample.rgb * alpha;
  156. }
  157. return output;
  158. }
  159. float getSpecularOcclusion(float NoV, float r, float ao)
  160. {
  161. float r2 = r * r;
  162. return saturate(pow(NoV + ao, r2) - 1.0f + ao);
  163. }
  164. float3 getImageBasedSpecular(float3 worldPos, float3 V, float3 R, SurfaceData surfaceData, float ao, float4 ssr, uint probeOffset, uint numProbes)
  165. {
  166. // See C++ code for generation of gPreintegratedEnvBRDF to see why this code works as is
  167. float3 N = surfaceData.worldNormal.xyz;
  168. float NoV = saturate(dot(N, V));
  169. // Note: Using a fixed F0 value of 0.04 (plastic) for dielectrics, and using albedo as specular for conductors.
  170. // For more customizability allow the user to provide separate albedo/specular colors for both types.
  171. float3 specularColor = lerp(float3(0.04f, 0.04f, 0.04f), surfaceData.albedo.rgb, surfaceData.metalness);
  172. // Get SSR
  173. float3 radiance = ssr.rgb;
  174. float alpha = 1.0f - ssr.a; // Determines how much to blend in reflection probes & skybox
  175. // Generate an approximate spec. occlusion value from AO. This doesn't need to be applied to SSR since it accounts
  176. // for occlusion by tracing rays.
  177. float specOcclusion = getSpecularOcclusion(NoV, surfaceData.roughness * surfaceData.roughness, ao);
  178. alpha *= specOcclusion;
  179. // Get radiance from probes and skybox
  180. radiance += gatherReflectionRadiance(worldPos, R, surfaceData.roughness, alpha, specularColor, probeOffset, numProbes);
  181. float2 envBRDF = gPreintegratedEnvBRDF.SampleLevel(gPreintegratedEnvBRDFSamp, float2(NoV, surfaceData.roughness), 0).rg;
  182. return radiance * (specularColor * envBRDF.x + envBRDF.y);
  183. }
  184. };
  185. };