BsCamera.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsCamera.h"
  4. #include "BsCameraRTTI.h"
  5. #include "BsMath.h"
  6. #include "BsMatrix3.h"
  7. #include "BsVector2.h"
  8. #include "BsAABox.h"
  9. #include "BsSphere.h"
  10. #include "BsException.h"
  11. #include "BsRenderAPI.h"
  12. #include "BsSceneObject.h"
  13. #include "BsRendererManager.h"
  14. #include "BsRenderer.h"
  15. #include "BsFrameAlloc.h"
  16. namespace bs
  17. {
  18. const float CameraBase::INFINITE_FAR_PLANE_ADJUST = 0.00001f;
  19. CameraBase::CameraBase()
  20. : mLayers(0xFFFFFFFFFFFFFFFF), mCameraFlags(CameraFlag::HDR), mPosition(BsZero), mRotation(BsIdentity)
  21. , mIsActive(true), mProjType(PT_PERSPECTIVE), mHorzFOV(Degree(90.0f)), mFarDist(1000.0f), mNearDist(0.05f)
  22. , mAspect(1.33333333333333f), mOrthoHeight(5), mPriority(0), mCustomViewMatrix(false), mCustomProjMatrix(false)
  23. , mMSAA(1), mFrustumExtentsManuallySet(false), mProjMatrixRS(BsZero), mProjMatrix(BsZero), mViewMatrix(BsZero)
  24. , mProjMatrixRSInv(BsZero), mProjMatrixInv(BsZero), mViewMatrixInv(BsZero), mRecalcFrustum(true)
  25. , mRecalcFrustumPlanes(true), mRecalcView(true)
  26. {
  27. mPPSettings = bs_shared_ptr_new<PostProcessSettings>();
  28. invalidateFrustum();
  29. }
  30. void CameraBase::setHorzFOV(const Radian& fov)
  31. {
  32. mHorzFOV = fov;
  33. invalidateFrustum();
  34. _markCoreDirty();
  35. }
  36. const Radian& CameraBase::getHorzFOV() const
  37. {
  38. return mHorzFOV;
  39. }
  40. void CameraBase::setFarClipDistance(float farPlane)
  41. {
  42. mFarDist = farPlane;
  43. invalidateFrustum();
  44. _markCoreDirty();
  45. }
  46. float CameraBase::getFarClipDistance() const
  47. {
  48. return mFarDist;
  49. }
  50. void CameraBase::setNearClipDistance(float nearPlane)
  51. {
  52. if (nearPlane <= 0)
  53. {
  54. LOGERR("Near clip distance must be greater than zero.");
  55. return;
  56. }
  57. mNearDist = nearPlane;
  58. invalidateFrustum();
  59. _markCoreDirty();
  60. }
  61. float CameraBase::getNearClipDistance() const
  62. {
  63. return mNearDist;
  64. }
  65. const Matrix4& CameraBase::getProjectionMatrix() const
  66. {
  67. updateFrustum();
  68. return mProjMatrix;
  69. }
  70. const Matrix4& CameraBase::getProjectionMatrixInv() const
  71. {
  72. updateFrustum();
  73. return mProjMatrixInv;
  74. }
  75. const Matrix4& CameraBase::getProjectionMatrixRS() const
  76. {
  77. updateFrustum();
  78. return mProjMatrixRS;
  79. }
  80. const Matrix4& CameraBase::getProjectionMatrixRSInv() const
  81. {
  82. updateFrustum();
  83. return mProjMatrixRSInv;
  84. }
  85. const Matrix4& CameraBase::getViewMatrix() const
  86. {
  87. updateView();
  88. return mViewMatrix;
  89. }
  90. const Matrix4& CameraBase::getViewMatrixInv() const
  91. {
  92. updateView();
  93. return mViewMatrixInv;
  94. }
  95. const ConvexVolume& CameraBase::getFrustum() const
  96. {
  97. // Make any pending updates to the calculated frustum planes
  98. updateFrustumPlanes();
  99. return mFrustum;
  100. }
  101. ConvexVolume CameraBase::getWorldFrustum() const
  102. {
  103. const Vector<Plane>& frustumPlanes = getFrustum().getPlanes();
  104. Matrix4 worldMatrix;
  105. worldMatrix.setTRS(mPosition, mRotation, Vector3::ONE);
  106. Vector<Plane> worldPlanes(frustumPlanes.size());
  107. UINT32 i = 0;
  108. for (auto& plane : frustumPlanes)
  109. {
  110. worldPlanes[i] = worldMatrix.multiplyAffine(plane);
  111. i++;
  112. }
  113. return ConvexVolume(worldPlanes);
  114. }
  115. void CameraBase::calcProjectionParameters(float& left, float& right, float& bottom, float& top) const
  116. {
  117. if (mCustomProjMatrix)
  118. {
  119. // Convert clipspace corners to camera space
  120. Matrix4 invProj = mProjMatrix.inverse();
  121. Vector3 topLeft(-0.5f, 0.5f, 0.0f);
  122. Vector3 bottomRight(0.5f, -0.5f, 0.0f);
  123. topLeft = invProj.multiply(topLeft);
  124. bottomRight = invProj.multiply(bottomRight);
  125. left = topLeft.x;
  126. top = topLeft.y;
  127. right = bottomRight.x;
  128. bottom = bottomRight.y;
  129. }
  130. else
  131. {
  132. if (mFrustumExtentsManuallySet)
  133. {
  134. left = mLeft;
  135. right = mRight;
  136. top = mTop;
  137. bottom = mBottom;
  138. }
  139. else if (mProjType == PT_PERSPECTIVE)
  140. {
  141. Radian thetaX(mHorzFOV * 0.5f);
  142. float tanThetaX = Math::tan(thetaX);
  143. float tanThetaY = tanThetaX / mAspect;
  144. float half_w = tanThetaX * mNearDist;
  145. float half_h = tanThetaY * mNearDist;
  146. left = -half_w;
  147. right = half_w;
  148. bottom = -half_h;
  149. top = half_h;
  150. mLeft = left;
  151. mRight = right;
  152. mTop = top;
  153. mBottom = bottom;
  154. }
  155. else
  156. {
  157. float half_w = getOrthoWindowWidth() * 0.5f;
  158. float half_h = getOrthoWindowHeight() * 0.5f;
  159. left = -half_w;
  160. right = half_w;
  161. bottom = -half_h;
  162. top = half_h;
  163. mLeft = left;
  164. mRight = right;
  165. mTop = top;
  166. mBottom = bottom;
  167. }
  168. }
  169. }
  170. void CameraBase::updateFrustum() const
  171. {
  172. if (isFrustumOutOfDate())
  173. {
  174. float left, right, bottom, top;
  175. calcProjectionParameters(left, right, bottom, top);
  176. if (!mCustomProjMatrix)
  177. {
  178. float inv_w = 1 / (right - left);
  179. float inv_h = 1 / (top - bottom);
  180. float inv_d = 1 / (mFarDist - mNearDist);
  181. if (mProjType == PT_PERSPECTIVE)
  182. {
  183. float A = 2 * mNearDist * inv_w;
  184. float B = 2 * mNearDist * inv_h;
  185. float C = (right + left) * inv_w;
  186. float D = (top + bottom) * inv_h;
  187. float q, qn;
  188. if (mFarDist == 0)
  189. {
  190. // Infinite far plane
  191. q = CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  192. qn = mNearDist * (CameraBase::INFINITE_FAR_PLANE_ADJUST - 2);
  193. }
  194. else
  195. {
  196. q = -(mFarDist + mNearDist) * inv_d;
  197. qn = -2 * (mFarDist * mNearDist) * inv_d;
  198. }
  199. mProjMatrix = Matrix4::ZERO;
  200. mProjMatrix[0][0] = A;
  201. mProjMatrix[0][2] = C;
  202. mProjMatrix[1][1] = B;
  203. mProjMatrix[1][2] = D;
  204. mProjMatrix[2][2] = q;
  205. mProjMatrix[2][3] = qn;
  206. mProjMatrix[3][2] = -1;
  207. }
  208. else if (mProjType == PT_ORTHOGRAPHIC)
  209. {
  210. float A = 2 * inv_w;
  211. float B = 2 * inv_h;
  212. float C = -(right + left) * inv_w;
  213. float D = -(top + bottom) * inv_h;
  214. float q, qn;
  215. if (mFarDist == 0)
  216. {
  217. // Can not do infinite far plane here, avoid divided zero only
  218. q = -CameraBase::INFINITE_FAR_PLANE_ADJUST / mNearDist;
  219. qn = -CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  220. }
  221. else
  222. {
  223. q = -2 * inv_d;
  224. qn = -(mFarDist + mNearDist) * inv_d;
  225. }
  226. mProjMatrix = Matrix4::ZERO;
  227. mProjMatrix[0][0] = A;
  228. mProjMatrix[0][3] = C;
  229. mProjMatrix[1][1] = B;
  230. mProjMatrix[1][3] = D;
  231. mProjMatrix[2][2] = q;
  232. mProjMatrix[2][3] = qn;
  233. mProjMatrix[3][3] = 1;
  234. }
  235. }
  236. ct::RenderAPI* renderAPI = ct::RenderAPI::instancePtr();
  237. renderAPI->convertProjectionMatrix(mProjMatrix, mProjMatrixRS);
  238. mProjMatrixInv = mProjMatrix.inverse();
  239. mProjMatrixRSInv = mProjMatrixRS.inverse();
  240. // Calculate bounding box (local)
  241. // Box is from 0, down -Z, max dimensions as determined from far plane
  242. // If infinite view frustum just pick a far value
  243. float farDist = (mFarDist == 0) ? 100000 : mFarDist;
  244. // Near plane bounds
  245. Vector3 min(left, bottom, -farDist);
  246. Vector3 max(right, top, 0);
  247. if (mCustomProjMatrix)
  248. {
  249. // Some custom projection matrices can have unusual inverted settings
  250. // So make sure the AABB is the right way around to start with
  251. Vector3 tmp = min;
  252. min.floor(max);
  253. max.ceil(tmp);
  254. }
  255. if (mProjType == PT_PERSPECTIVE)
  256. {
  257. // Merge with far plane bounds
  258. float radio = farDist / mNearDist;
  259. min.floor(Vector3(left * radio, bottom * radio, -farDist));
  260. max.ceil(Vector3(right * radio, top * radio, 0));
  261. }
  262. mBoundingBox.setExtents(min, max);
  263. mRecalcFrustum = false;
  264. mRecalcFrustumPlanes = true;
  265. }
  266. }
  267. bool CameraBase::isFrustumOutOfDate() const
  268. {
  269. return mRecalcFrustum;
  270. }
  271. void CameraBase::updateView() const
  272. {
  273. if (!mCustomViewMatrix && mRecalcView)
  274. {
  275. mViewMatrix.makeView(mPosition, mRotation);
  276. mViewMatrixInv = mViewMatrix.inverseAffine();
  277. mRecalcView = false;
  278. }
  279. }
  280. void CameraBase::updateFrustumPlanes() const
  281. {
  282. updateFrustum();
  283. if (mRecalcFrustumPlanes)
  284. {
  285. mFrustum = ConvexVolume(mProjMatrix);
  286. mRecalcFrustumPlanes = false;
  287. }
  288. }
  289. float CameraBase::getAspectRatio() const
  290. {
  291. return mAspect;
  292. }
  293. void CameraBase::setAspectRatio(float r)
  294. {
  295. mAspect = r;
  296. invalidateFrustum();
  297. _markCoreDirty();
  298. }
  299. const AABox& CameraBase::getBoundingBox() const
  300. {
  301. updateFrustum();
  302. return mBoundingBox;
  303. }
  304. void CameraBase::setProjectionType(ProjectionType pt)
  305. {
  306. mProjType = pt;
  307. invalidateFrustum();
  308. _markCoreDirty();
  309. }
  310. ProjectionType CameraBase::getProjectionType() const
  311. {
  312. return mProjType;
  313. }
  314. void CameraBase::setCustomViewMatrix(bool enable, const Matrix4& viewMatrix)
  315. {
  316. mCustomViewMatrix = enable;
  317. if (enable)
  318. {
  319. BS_ASSERT(viewMatrix.isAffine());
  320. mViewMatrix = viewMatrix;
  321. mViewMatrixInv = mViewMatrix.inverseAffine();
  322. }
  323. _markCoreDirty();
  324. }
  325. void CameraBase::setCustomProjectionMatrix(bool enable, const Matrix4& projMatrix)
  326. {
  327. mCustomProjMatrix = enable;
  328. if (enable)
  329. mProjMatrix = projMatrix;
  330. invalidateFrustum();
  331. _markCoreDirty();
  332. }
  333. void CameraBase::setOrthoWindow(float w, float h)
  334. {
  335. mOrthoHeight = h;
  336. mAspect = w / h;
  337. invalidateFrustum();
  338. _markCoreDirty();
  339. }
  340. void CameraBase::setOrthoWindowHeight(float h)
  341. {
  342. mOrthoHeight = h;
  343. invalidateFrustum();
  344. _markCoreDirty();
  345. }
  346. void CameraBase::setOrthoWindowWidth(float w)
  347. {
  348. mOrthoHeight = w / mAspect;
  349. invalidateFrustum();
  350. _markCoreDirty();
  351. }
  352. float CameraBase::getOrthoWindowHeight() const
  353. {
  354. return mOrthoHeight;
  355. }
  356. float CameraBase::getOrthoWindowWidth() const
  357. {
  358. return mOrthoHeight * mAspect;
  359. }
  360. void CameraBase::setFrustumExtents(float left, float right, float top, float bottom)
  361. {
  362. mFrustumExtentsManuallySet = true;
  363. mLeft = left;
  364. mRight = right;
  365. mTop = top;
  366. mBottom = bottom;
  367. invalidateFrustum();
  368. _markCoreDirty();
  369. }
  370. void CameraBase::resetFrustumExtents()
  371. {
  372. mFrustumExtentsManuallySet = false;
  373. invalidateFrustum();
  374. _markCoreDirty();
  375. }
  376. void CameraBase::getFrustumExtents(float& outleft, float& outright, float& outtop, float& outbottom) const
  377. {
  378. updateFrustum();
  379. outleft = mLeft;
  380. outright = mRight;
  381. outtop = mTop;
  382. outbottom = mBottom;
  383. }
  384. void CameraBase::setFlag(const CameraFlag& flag, bool enable)
  385. {
  386. if (enable)
  387. mCameraFlags.set(flag);
  388. else
  389. mCameraFlags.unset(flag);
  390. _markCoreDirty();
  391. }
  392. void CameraBase::setPosition(const Vector3& position)
  393. {
  394. mPosition = position;
  395. mRecalcView = true;
  396. _markCoreDirty(CameraDirtyFlag::Transform);
  397. }
  398. void CameraBase::setRotation(const Quaternion& rotation)
  399. {
  400. mRotation = rotation;
  401. mRecalcView = true;
  402. _markCoreDirty(CameraDirtyFlag::Transform);
  403. }
  404. void CameraBase::invalidateFrustum() const
  405. {
  406. mRecalcFrustum = true;
  407. mRecalcFrustumPlanes = true;
  408. }
  409. Vector2I CameraBase::worldToScreenPoint(const Vector3& worldPoint) const
  410. {
  411. Vector2 ndcPoint = worldToNdcPoint(worldPoint);
  412. return ndcToScreenPoint(ndcPoint);
  413. }
  414. Vector2 CameraBase::worldToNdcPoint(const Vector3& worldPoint) const
  415. {
  416. Vector3 viewPoint = worldToViewPoint(worldPoint);
  417. return viewToNdcPoint(viewPoint);
  418. }
  419. Vector3 CameraBase::worldToViewPoint(const Vector3& worldPoint) const
  420. {
  421. return getViewMatrix().multiplyAffine(worldPoint);
  422. }
  423. Vector3 CameraBase::screenToWorldPoint(const Vector2I& screenPoint, float depth) const
  424. {
  425. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  426. return ndcToWorldPoint(ndcPoint, depth);
  427. }
  428. Vector3 CameraBase::screenToWorldPointDeviceDepth(const Vector2I& screenPoint, float deviceDepth) const
  429. {
  430. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  431. Vector4 worldPoint(ndcPoint.x, ndcPoint.y, deviceDepth, 1.0f);
  432. worldPoint = getProjectionMatrixRS().inverse().multiply(worldPoint);
  433. Vector3 worldPoint3D;
  434. if (Math::abs(worldPoint.w) > 1e-7f)
  435. {
  436. float invW = 1.0f / worldPoint.w;
  437. worldPoint3D.x = worldPoint.x * invW;
  438. worldPoint3D.y = worldPoint.y * invW;
  439. worldPoint3D.z = worldPoint.z * invW;
  440. }
  441. return viewToWorldPoint(worldPoint3D);
  442. }
  443. Vector3 CameraBase::screenToViewPoint(const Vector2I& screenPoint, float depth) const
  444. {
  445. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  446. return ndcToViewPoint(ndcPoint, depth);
  447. }
  448. Vector2 CameraBase::screenToNdcPoint(const Vector2I& screenPoint) const
  449. {
  450. Rect2I viewport = getViewportRect();
  451. Vector2 ndcPoint;
  452. ndcPoint.x = (float)(((screenPoint.x - viewport.x) / (float)viewport.width) * 2.0f - 1.0f);
  453. const RenderAPIInfo& info = RenderAPI::getAPIInfo();
  454. if(info.isFlagSet(RenderAPIFeatureFlag::NDCYAxisDown))
  455. ndcPoint.y = (float)(((screenPoint.y - viewport.y) / (float)viewport.height) * 2.0f - 1.0f);
  456. else
  457. ndcPoint.y = (float)((1.0f - ((screenPoint.y - viewport.y) / (float)viewport.height)) * 2.0f - 1.0f);
  458. return ndcPoint;
  459. }
  460. Vector3 CameraBase::viewToWorldPoint(const Vector3& viewPoint) const
  461. {
  462. return getViewMatrix().inverseAffine().multiplyAffine(viewPoint);
  463. }
  464. Vector2I CameraBase::viewToScreenPoint(const Vector3& viewPoint) const
  465. {
  466. Vector2 ndcPoint = viewToNdcPoint(viewPoint);
  467. return ndcToScreenPoint(ndcPoint);
  468. }
  469. Vector2 CameraBase::viewToNdcPoint(const Vector3& viewPoint) const
  470. {
  471. Vector3 projPoint = projectPoint(viewPoint);
  472. return Vector2(projPoint.x, projPoint.y);
  473. }
  474. Vector3 CameraBase::ndcToWorldPoint(const Vector2& ndcPoint, float depth) const
  475. {
  476. Vector3 viewPoint = ndcToViewPoint(ndcPoint, depth);
  477. return viewToWorldPoint(viewPoint);
  478. }
  479. Vector3 CameraBase::ndcToViewPoint(const Vector2& ndcPoint, float depth) const
  480. {
  481. return unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, depth));
  482. }
  483. Vector2I CameraBase::ndcToScreenPoint(const Vector2& ndcPoint) const
  484. {
  485. Rect2I viewport = getViewportRect();
  486. Vector2I screenPoint;
  487. screenPoint.x = Math::roundToInt(viewport.x + ((ndcPoint.x + 1.0f) * 0.5f) * viewport.width);
  488. screenPoint.y = Math::roundToInt(viewport.y + (1.0f - (ndcPoint.y + 1.0f) * 0.5f) * viewport.height);
  489. return screenPoint;
  490. }
  491. Ray CameraBase::screenPointToRay(const Vector2I& screenPoint) const
  492. {
  493. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  494. Vector3 near = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist));
  495. Vector3 far = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist + 1.0f));
  496. Ray ray(near, Vector3::normalize(far - near));
  497. ray.transformAffine(getViewMatrix().inverseAffine());
  498. return ray;
  499. }
  500. Vector3 CameraBase::projectPoint(const Vector3& point) const
  501. {
  502. Vector4 projPoint4(point.x, point.y, point.z, 1.0f);
  503. projPoint4 = getProjectionMatrixRS().multiply(projPoint4);
  504. if (Math::abs(projPoint4.w) > 1e-7f)
  505. {
  506. float invW = 1.0f / projPoint4.w;
  507. projPoint4.x *= invW;
  508. projPoint4.y *= invW;
  509. projPoint4.z *= invW;
  510. }
  511. else
  512. {
  513. projPoint4.x = 0.0f;
  514. projPoint4.y = 0.0f;
  515. projPoint4.z = 0.0f;
  516. }
  517. return Vector3(projPoint4.x, projPoint4.y, projPoint4.z);
  518. }
  519. Vector3 CameraBase::unprojectPoint(const Vector3& point) const
  520. {
  521. // Point.z is expected to be in view space, so we need to do some extra work to get the proper coordinates
  522. // (as opposed to if point.z was in device coordinates, in which case we could just inverse project)
  523. // Get world position for a point near the far plane (0.95f)
  524. Vector4 farAwayPoint(point.x, point.y, 0.95f, 1.0f);
  525. farAwayPoint = getProjectionMatrixRS().inverse().multiply(farAwayPoint);
  526. // Can't proceed if w is too small
  527. if (Math::abs(farAwayPoint.w) > 1e-7f)
  528. {
  529. // Perspective divide, to get the values that make sense in 3D space
  530. float invW = 1.0f / farAwayPoint.w;
  531. Vector3 farAwayPoint3D;
  532. farAwayPoint3D.x = farAwayPoint.x * invW;
  533. farAwayPoint3D.y = farAwayPoint.y * invW;
  534. farAwayPoint3D.z = farAwayPoint.z * invW;
  535. // Find the distance to the far point along the camera's viewing axis
  536. float distAlongZ = farAwayPoint3D.dot(-Vector3::UNIT_Z);
  537. // Do nothing if point is behind the camera
  538. if (distAlongZ >= 0.0f)
  539. {
  540. if (mProjType == PT_PERSPECTIVE)
  541. {
  542. // Direction from origin to our point
  543. Vector3 dir = farAwayPoint3D; // Camera is at (0, 0, 0) so it's the same vector
  544. // Our view space depth (point.z) is distance along the camera's viewing axis. Since our direction
  545. // vector is not parallel to the viewing axis, instead of normalizing it with its own length, we
  546. // "normalize" with the length projected along the camera's viewing axis.
  547. dir /= distAlongZ;
  548. // And now we just find the final position along the direction
  549. return dir * point.z;
  550. }
  551. else // Ortographic
  552. {
  553. // Depth difference between our arbitrary point and actual depth
  554. float depthDiff = distAlongZ - point.z;
  555. // Depth difference along viewing direction
  556. Vector3 depthDiffVec = depthDiff * -Vector3::UNIT_Z;
  557. // Return point that is depthDiff closer than our arbitrary point
  558. return farAwayPoint3D - depthDiffVec;
  559. }
  560. }
  561. }
  562. return Vector3(0.0f, 0.0f, 0.0f);
  563. }
  564. Camera::Camera(SPtr<RenderTarget> target, float left, float top, float width, float height)
  565. :mMain(false), mLastUpdateHash(0)
  566. {
  567. if (target != nullptr)
  568. target->blockUntilCoreInitialized();
  569. mViewport = Viewport::create(target, left, top, width, height);
  570. }
  571. SPtr<ct::Camera> Camera::getCore() const
  572. {
  573. return std::static_pointer_cast<ct::Camera>(mCoreSpecific);
  574. }
  575. SPtr<Camera> Camera::create(SPtr<RenderTarget> target, float left, float top, float width, float height)
  576. {
  577. Camera* handler = new (bs_alloc<Camera>()) Camera(target, left, top, width, height);
  578. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  579. handlerPtr->_setThisPtr(handlerPtr);
  580. handlerPtr->initialize();
  581. return handlerPtr;
  582. }
  583. SPtr<Camera> Camera::createEmpty()
  584. {
  585. Camera* handler = new (bs_alloc<Camera>()) Camera();
  586. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  587. handlerPtr->_setThisPtr(handlerPtr);
  588. return handlerPtr;
  589. }
  590. SPtr<ct::CoreObject> Camera::createCore() const
  591. {
  592. ct::Camera* handler = new (bs_alloc<ct::Camera>()) ct::Camera(mViewport->getCore());
  593. SPtr<ct::Camera> handlerPtr = bs_shared_ptr<ct::Camera>(handler);
  594. handlerPtr->_setThisPtr(handlerPtr);
  595. return handlerPtr;
  596. }
  597. Rect2I Camera::getViewportRect() const
  598. {
  599. return mViewport->getArea();
  600. }
  601. CoreSyncData Camera::syncToCore(FrameAlloc* allocator)
  602. {
  603. UINT32 dirtyFlag = getCoreDirtyFlags();
  604. UINT32 size = 0;
  605. size += rttiGetElemSize(dirtyFlag);
  606. size += rttiGetElemSize(mPosition);
  607. size += rttiGetElemSize(mRotation);
  608. UINT32 ppSize = 0;
  609. if (dirtyFlag != (UINT32)CameraDirtyFlag::Transform)
  610. {
  611. size += rttiGetElemSize(mLayers);
  612. size += rttiGetElemSize(mProjType);
  613. size += rttiGetElemSize(mHorzFOV);
  614. size += rttiGetElemSize(mFarDist);
  615. size += rttiGetElemSize(mNearDist);
  616. size += rttiGetElemSize(mAspect);
  617. size += rttiGetElemSize(mOrthoHeight);
  618. size += rttiGetElemSize(mPriority);
  619. size += rttiGetElemSize(mCustomViewMatrix);
  620. size += rttiGetElemSize(mCustomProjMatrix);
  621. size += rttiGetElemSize(mFrustumExtentsManuallySet);
  622. size += rttiGetElemSize(mCameraFlags);
  623. size += rttiGetElemSize(mIsActive);
  624. size += rttiGetElemSize(mMSAA);
  625. size += sizeof(UINT32);
  626. if(mPPSettings != nullptr)
  627. {
  628. mPPSettings->_getSyncData(nullptr, ppSize);
  629. size += ppSize;
  630. }
  631. }
  632. UINT8* buffer = allocator->alloc(size);
  633. char* dataPtr = (char*)buffer;
  634. dataPtr = rttiWriteElem(dirtyFlag, dataPtr);
  635. dataPtr = rttiWriteElem(mPosition, dataPtr);
  636. dataPtr = rttiWriteElem(mRotation, dataPtr);
  637. if (dirtyFlag != (UINT32)CameraDirtyFlag::Transform)
  638. {
  639. dataPtr = rttiWriteElem(mLayers, dataPtr);
  640. dataPtr = rttiWriteElem(mProjType, dataPtr);
  641. dataPtr = rttiWriteElem(mHorzFOV, dataPtr);
  642. dataPtr = rttiWriteElem(mFarDist, dataPtr);
  643. dataPtr = rttiWriteElem(mNearDist, dataPtr);
  644. dataPtr = rttiWriteElem(mAspect, dataPtr);
  645. dataPtr = rttiWriteElem(mOrthoHeight, dataPtr);
  646. dataPtr = rttiWriteElem(mPriority, dataPtr);
  647. dataPtr = rttiWriteElem(mCustomViewMatrix, dataPtr);
  648. dataPtr = rttiWriteElem(mCustomProjMatrix, dataPtr);
  649. dataPtr = rttiWriteElem(mFrustumExtentsManuallySet, dataPtr);
  650. dataPtr = rttiWriteElem(mCameraFlags, dataPtr);
  651. dataPtr = rttiWriteElem(mIsActive, dataPtr);
  652. dataPtr = rttiWriteElem(mMSAA, dataPtr);
  653. dataPtr = rttiWriteElem(ppSize, dataPtr);
  654. if(mPPSettings != nullptr)
  655. mPPSettings->_getSyncData((UINT8*)dataPtr, ppSize);
  656. dataPtr += ppSize;
  657. }
  658. return CoreSyncData(buffer, size);
  659. }
  660. void Camera::getCoreDependencies(Vector<CoreObject*>& dependencies)
  661. {
  662. dependencies.push_back(mViewport.get());
  663. }
  664. void Camera::_markCoreDirty(CameraDirtyFlag flag)
  665. {
  666. markCoreDirty((UINT32)flag);
  667. }
  668. RTTITypeBase* Camera::getRTTIStatic()
  669. {
  670. return CameraRTTI::instance();
  671. }
  672. RTTITypeBase* Camera::getRTTI() const
  673. {
  674. return Camera::getRTTIStatic();
  675. }
  676. namespace ct
  677. {
  678. Camera::~Camera()
  679. {
  680. RendererManager::instance().getActive()->notifyCameraRemoved(this);
  681. }
  682. Camera::Camera(SPtr<RenderTarget> target, float left, float top, float width, float height)
  683. : mRendererId(0)
  684. {
  685. mViewport = Viewport::create(target, left, top, width, height);
  686. }
  687. Camera::Camera(const SPtr<Viewport>& viewport)
  688. : mRendererId(0)
  689. {
  690. mViewport = viewport;
  691. }
  692. void Camera::initialize()
  693. {
  694. RendererManager::instance().getActive()->notifyCameraAdded(this);
  695. CoreObject::initialize();
  696. }
  697. Rect2I Camera::getViewportRect() const
  698. {
  699. return mViewport->getArea();
  700. }
  701. void Camera::syncToCore(const CoreSyncData& data)
  702. {
  703. char* dataPtr = (char*)data.getBuffer();
  704. CameraDirtyFlag dirtyFlag;
  705. dataPtr = rttiReadElem(dirtyFlag, dataPtr);
  706. dataPtr = rttiReadElem(mPosition, dataPtr);
  707. dataPtr = rttiReadElem(mRotation, dataPtr);
  708. mRecalcFrustum = true;
  709. mRecalcFrustumPlanes = true;
  710. mRecalcView = true;
  711. if (dirtyFlag != CameraDirtyFlag::Transform)
  712. {
  713. dataPtr = rttiReadElem(mLayers, dataPtr);
  714. dataPtr = rttiReadElem(mProjType, dataPtr);
  715. dataPtr = rttiReadElem(mHorzFOV, dataPtr);
  716. dataPtr = rttiReadElem(mFarDist, dataPtr);
  717. dataPtr = rttiReadElem(mNearDist, dataPtr);
  718. dataPtr = rttiReadElem(mAspect, dataPtr);
  719. dataPtr = rttiReadElem(mOrthoHeight, dataPtr);
  720. dataPtr = rttiReadElem(mPriority, dataPtr);
  721. dataPtr = rttiReadElem(mCustomViewMatrix, dataPtr);
  722. dataPtr = rttiReadElem(mCustomProjMatrix, dataPtr);
  723. dataPtr = rttiReadElem(mFrustumExtentsManuallySet, dataPtr);
  724. dataPtr = rttiReadElem(mCameraFlags, dataPtr);
  725. dataPtr = rttiReadElem(mIsActive, dataPtr);
  726. dataPtr = rttiReadElem(mMSAA, dataPtr);
  727. UINT32 ppSize = 0;
  728. dataPtr = rttiReadElem(ppSize, dataPtr);
  729. if(ppSize > 0)
  730. {
  731. if (mPPSettings == nullptr)
  732. mPPSettings = bs_shared_ptr_new<PostProcessSettings>();
  733. mPPSettings->_setSyncData((UINT8*)dataPtr, ppSize);
  734. dataPtr += ppSize;
  735. }
  736. }
  737. RendererManager::instance().getActive()->notifyCameraUpdated(this, (UINT32)dirtyFlag);
  738. }
  739. }
  740. }