BsRenderBeast.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. #include "BsRenderBeast.h"
  2. #include "BsCCamera.h"
  3. #include "BsSceneObject.h"
  4. #include "BsSceneManager.h"
  5. #include "BsCRenderable.h"
  6. #include "BsMaterial.h"
  7. #include "BsMesh.h"
  8. #include "BsPass.h"
  9. #include "BsBlendState.h"
  10. #include "BsRasterizerState.h"
  11. #include "BsDepthStencilState.h"
  12. #include "BsSamplerState.h"
  13. #include "BsCoreApplication.h"
  14. #include "BsViewport.h"
  15. #include "BsRenderTarget.h"
  16. #include "BsRenderQueue.h"
  17. #include "BsGUIManager.h"
  18. #include "BsCoreThread.h"
  19. #include "BsGpuParams.h"
  20. #include "BsProfilerCPU.h"
  21. #include "BsShader.h"
  22. #include "BsTechnique.h"
  23. #include "BsHardwareBufferManager.h"
  24. #include "BsGpuParamBlockBuffer.h"
  25. #include "BsShader.h"
  26. #include "BsStaticRenderableHandler.h"
  27. #include "BsTime.h"
  28. #include "BsRenderableElement.h"
  29. #include "BsFrameAlloc.h"
  30. #include "BsCoreObjectManager.h"
  31. #include "BsRenderBeastOptions.h"
  32. #include "BsSamplerOverrides.h"
  33. #include "BsLight.h"
  34. #include "BsRenderTexturePool.h"
  35. #include "BsRenderTargets.h"
  36. #include "BsRendererUtility.h"
  37. using namespace std::placeholders;
  38. namespace BansheeEngine
  39. {
  40. RenderBeast::RenderBeast()
  41. :mOptions(bs_shared_ptr_new<RenderBeastOptions>()), mOptionsDirty(true), mStaticHandler(nullptr),
  42. mDefaultMaterial(nullptr), mPointLightMat(nullptr), mDirLightMat(nullptr)
  43. {
  44. }
  45. const StringID& RenderBeast::getName() const
  46. {
  47. static StringID name = "RenderBeast";
  48. return name;
  49. }
  50. void RenderBeast::initialize()
  51. {
  52. CoreRenderer::initialize();
  53. CoreThread::instance().queueCommand(std::bind(&RenderBeast::initializeCore, this));
  54. }
  55. void RenderBeast::destroy()
  56. {
  57. CoreRenderer::destroy();
  58. gCoreAccessor().queueCommand(std::bind(&RenderBeast::destroyCore, this));
  59. gCoreAccessor().submitToCoreThread(true);
  60. }
  61. void RenderBeast::initializeCore()
  62. {
  63. RendererUtility::startUp();
  64. mCoreOptions = bs_shared_ptr_new<RenderBeastOptions>();
  65. mStaticHandler = bs_new<StaticRenderableHandler>();
  66. mDefaultMaterial = bs_new<DefaultMaterial>();
  67. mPointLightMat = bs_new<PointLightMat>();
  68. mDirLightMat = bs_new<DirectionalLightMat>();
  69. RenderTexturePool::startUp();
  70. }
  71. void RenderBeast::destroyCore()
  72. {
  73. if (mStaticHandler != nullptr)
  74. bs_delete(mStaticHandler);
  75. mRenderTargets.clear();
  76. mCameraData.clear();
  77. mRenderables.clear();
  78. RenderTexturePool::shutDown();
  79. bs_delete(mDefaultMaterial);
  80. bs_delete(mPointLightMat);
  81. bs_delete(mDirLightMat);
  82. RendererUtility::shutDown();
  83. assert(mSamplerOverrides.empty());
  84. }
  85. void RenderBeast::_notifyRenderableAdded(RenderableCore* renderable)
  86. {
  87. UINT32 renderableId = (UINT32)mRenderables.size();
  88. renderable->setRendererId(renderableId);
  89. mRenderables.push_back(RenderableData());
  90. mRenderableShaderData.push_back(RenderableShaderData());
  91. mWorldBounds.push_back(renderable->getBounds());
  92. RenderableData& renderableData = mRenderables.back();
  93. renderableData.renderable = renderable;
  94. RenderableShaderData& shaderData = mRenderableShaderData.back();
  95. shaderData.worldTransform = renderable->getTransform();
  96. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  97. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  98. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  99. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  100. if (renderable->getRenderableType() == RenType_LitTextured)
  101. renderableData.controller = mStaticHandler;
  102. else
  103. renderableData.controller = nullptr;
  104. SPtr<MeshCore> mesh = renderable->getMesh();
  105. if (mesh != nullptr)
  106. {
  107. const MeshProperties& meshProps = mesh->getProperties();
  108. SPtr<VertexDeclarationCore> vertexDecl = mesh->getVertexData()->vertexDeclaration;
  109. for (UINT32 i = 0; i < meshProps.getNumSubMeshes(); i++)
  110. {
  111. renderableData.elements.push_back(BeastRenderableElement());
  112. BeastRenderableElement& renElement = renderableData.elements.back();
  113. renElement.mesh = mesh;
  114. renElement.subMesh = meshProps.getSubMesh(i);
  115. renElement.renderableId = renderableId;
  116. renElement.material = renderable->getMaterial(i);
  117. if (renElement.material == nullptr)
  118. renElement.material = renderable->getMaterial(0);
  119. if (renElement.material != nullptr && renElement.material->getShader() == nullptr)
  120. renElement.material = nullptr;
  121. // Validate mesh <-> shader vertex bindings
  122. if (renElement.material != nullptr)
  123. {
  124. UINT32 numPasses = renElement.material->getNumPasses();
  125. for (UINT32 j = 0; j < numPasses; j++)
  126. {
  127. SPtr<PassCore> pass = renElement.material->getPass(j);
  128. SPtr<VertexDeclarationCore> shaderDecl = pass->getVertexProgram()->getInputDeclaration();
  129. if (!vertexDecl->isCompatible(shaderDecl))
  130. {
  131. Vector<VertexElement> missingElements = vertexDecl->getMissingElements(shaderDecl);
  132. StringStream wrnStream;
  133. wrnStream << "Provided mesh is missing required vertex attributes to render with the provided shader. Missing elements: " << std::endl;
  134. for (auto& entry : missingElements)
  135. wrnStream << "\t" << toString(entry.getSemantic()) << entry.getSemanticIdx() << std::endl;
  136. LOGWRN(wrnStream.str());
  137. break;
  138. }
  139. }
  140. }
  141. // If no material use the default material
  142. if (renElement.material == nullptr)
  143. renElement.material = mDefaultMaterial->getMaterial();
  144. auto iterFind = mSamplerOverrides.find(renElement.material);
  145. if (iterFind != mSamplerOverrides.end())
  146. {
  147. renElement.samplerOverrides = iterFind->second;
  148. iterFind->second->refCount++;
  149. }
  150. else
  151. {
  152. MaterialSamplerOverrides* samplerOverrides = SamplerOverrideUtility::generateSamplerOverrides(renElement.material, mCoreOptions);
  153. mSamplerOverrides[renElement.material] = samplerOverrides;
  154. renElement.samplerOverrides = samplerOverrides;
  155. samplerOverrides->refCount++;
  156. }
  157. if (renderableData.controller != nullptr)
  158. renderableData.controller->initializeRenderElem(renElement);
  159. }
  160. }
  161. }
  162. void RenderBeast::_notifyRenderableRemoved(RenderableCore* renderable)
  163. {
  164. UINT32 renderableId = renderable->getRendererId();
  165. RenderableCore* lastRenerable = mRenderables.back().renderable;
  166. UINT32 lastRenderableId = lastRenerable->getRendererId();
  167. Vector<BeastRenderableElement>& elements = mRenderables[renderableId].elements;
  168. for (auto& element : elements)
  169. {
  170. auto iterFind = mSamplerOverrides.find(element.material);
  171. assert(iterFind != mSamplerOverrides.end());
  172. MaterialSamplerOverrides* samplerOverrides = iterFind->second;
  173. samplerOverrides->refCount--;
  174. if (samplerOverrides->refCount == 0)
  175. {
  176. SamplerOverrideUtility::destroySamplerOverrides(samplerOverrides);
  177. mSamplerOverrides.erase(iterFind);
  178. }
  179. element.samplerOverrides = nullptr;
  180. }
  181. if (renderableId != lastRenderableId)
  182. {
  183. // Swap current last element with the one we want to erase
  184. std::swap(mRenderables[renderableId], mRenderables[lastRenderableId]);
  185. std::swap(mWorldBounds[renderableId], mWorldBounds[lastRenderableId]);
  186. std::swap(mRenderableShaderData[renderableId], mRenderableShaderData[lastRenderableId]);
  187. lastRenerable->setRendererId(renderableId);
  188. Vector<BeastRenderableElement>& lastRenderableElements = mRenderables[renderableId].elements;
  189. for (auto& element : elements)
  190. element.renderableId = renderableId;
  191. }
  192. // Last element is the one we want to erase
  193. mRenderables.erase(mRenderables.end() - 1);
  194. mWorldBounds.erase(mWorldBounds.end() - 1);
  195. mRenderableShaderData.erase(mRenderableShaderData.end() - 1);
  196. }
  197. void RenderBeast::_notifyRenderableUpdated(RenderableCore* renderable)
  198. {
  199. UINT32 renderableId = renderable->getRendererId();
  200. RenderableShaderData& shaderData = mRenderableShaderData[renderableId];
  201. shaderData.worldTransform = renderable->getTransform();
  202. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  203. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  204. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  205. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  206. mWorldBounds[renderableId] = renderable->getBounds();
  207. }
  208. void RenderBeast::_notifyLightAdded(LightCore* light)
  209. {
  210. if (light->getType() == LightType::Directional)
  211. {
  212. UINT32 lightId = (UINT32)mDirectionalLights.size();
  213. light->setRendererId(lightId);
  214. mDirectionalLights.push_back(LightData());
  215. LightData& lightData = mDirectionalLights.back();
  216. lightData.internal = light;
  217. }
  218. else
  219. {
  220. UINT32 lightId = (UINT32)mPointLights.size();
  221. light->setRendererId(lightId);
  222. mPointLights.push_back(LightData());
  223. mLightWorldBounds.push_back(light->getBounds());
  224. LightData& lightData = mPointLights.back();
  225. lightData.internal = light;
  226. }
  227. }
  228. void RenderBeast::_notifyLightUpdated(LightCore* light)
  229. {
  230. UINT32 lightId = light->getRendererId();
  231. if (light->getType() != LightType::Directional)
  232. mLightWorldBounds[lightId] = light->getBounds();
  233. }
  234. void RenderBeast::_notifyLightRemoved(LightCore* light)
  235. {
  236. UINT32 lightId = light->getRendererId();
  237. if (light->getType() == LightType::Directional)
  238. {
  239. LightCore* lastLight = mDirectionalLights.back().internal;
  240. UINT32 lastLightId = lastLight->getRendererId();
  241. if (lightId != lastLightId)
  242. {
  243. // Swap current last element with the one we want to erase
  244. std::swap(mDirectionalLights[lightId], mDirectionalLights[lastLightId]);
  245. lastLight->setRendererId(lightId);
  246. }
  247. // Last element is the one we want to erase
  248. mDirectionalLights.erase(mDirectionalLights.end() - 1);
  249. }
  250. else
  251. {
  252. LightCore* lastLight = mPointLights.back().internal;
  253. UINT32 lastLightId = lastLight->getRendererId();
  254. if (lightId != lastLightId)
  255. {
  256. // Swap current last element with the one we want to erase
  257. std::swap(mPointLights[lightId], mPointLights[lastLightId]);
  258. std::swap(mLightWorldBounds[lightId], mLightWorldBounds[lastLightId]);
  259. lastLight->setRendererId(lightId);
  260. }
  261. // Last element is the one we want to erase
  262. mPointLights.erase(mPointLights.end() - 1);
  263. mLightWorldBounds.erase(mLightWorldBounds.end() - 1);
  264. }
  265. }
  266. void RenderBeast::_notifyCameraAdded(const CameraCore* camera)
  267. {
  268. SPtr<RenderTargetCore> renderTarget = camera->getViewport()->getTarget();
  269. if (renderTarget == nullptr)
  270. return;
  271. CameraData& camData = mCameraData[camera];
  272. camData.opaqueQueue = bs_shared_ptr_new<RenderQueue>(mCoreOptions->stateReductionMode);
  273. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  274. if (transparentStateReduction == StateReduction::Material)
  275. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  276. camData.transparentQueue = bs_shared_ptr_new<RenderQueue>(transparentStateReduction);
  277. // Register in render target list
  278. auto findIter = std::find_if(mRenderTargets.begin(), mRenderTargets.end(),
  279. [&](const RenderTargetData& x) { return x.target == renderTarget; });
  280. if (findIter != mRenderTargets.end())
  281. {
  282. findIter->cameras.push_back(camera);
  283. }
  284. else
  285. {
  286. mRenderTargets.push_back(RenderTargetData());
  287. RenderTargetData& renderTargetData = mRenderTargets.back();
  288. renderTargetData.target = renderTarget;
  289. renderTargetData.cameras.push_back(camera);
  290. }
  291. // Sort render targets based on priority
  292. auto cameraComparer = [&](const CameraCore* a, const CameraCore* b) { return a->getPriority() > b->getPriority(); };
  293. auto renderTargetInfoComparer = [&](const RenderTargetData& a, const RenderTargetData& b)
  294. { return a.target->getProperties().getPriority() > b.target->getProperties().getPriority(); };
  295. std::sort(begin(mRenderTargets), end(mRenderTargets), renderTargetInfoComparer);
  296. for (auto& camerasPerTarget : mRenderTargets)
  297. {
  298. Vector<const CameraCore*>& cameras = camerasPerTarget.cameras;
  299. std::sort(begin(cameras), end(cameras), cameraComparer);
  300. }
  301. }
  302. void RenderBeast::_notifyCameraRemoved(const CameraCore* camera)
  303. {
  304. mCameraData.erase(camera);
  305. // Remove from render target list
  306. for (auto iterTarget = mRenderTargets.begin(); iterTarget != mRenderTargets.end(); ++iterTarget)
  307. {
  308. RenderTargetData& target = *iterTarget;
  309. for (auto iterCam = target.cameras.begin(); iterCam != target.cameras.end(); ++iterCam)
  310. {
  311. if (camera == *iterCam)
  312. {
  313. target.cameras.erase(iterCam);
  314. break;
  315. }
  316. }
  317. if (target.cameras.empty())
  318. {
  319. mRenderTargets.erase(iterTarget);
  320. break;
  321. }
  322. }
  323. }
  324. void RenderBeast::setOptions(const SPtr<CoreRendererOptions>& options)
  325. {
  326. mOptions = std::static_pointer_cast<RenderBeastOptions>(options);
  327. mOptionsDirty = true;
  328. }
  329. SPtr<CoreRendererOptions> RenderBeast::getOptions() const
  330. {
  331. return mOptions;
  332. }
  333. void RenderBeast::renderAll()
  334. {
  335. // Sync all dirty sim thread CoreObject data to core thread
  336. CoreObjectManager::instance().syncToCore(gCoreAccessor());
  337. if (mOptionsDirty)
  338. {
  339. gCoreAccessor().queueCommand(std::bind(&RenderBeast::syncRenderOptions, this, *mOptions));
  340. mOptionsDirty = false;
  341. }
  342. gCoreAccessor().queueCommand(std::bind(&RenderBeast::renderAllCore, this, gTime().getTime()));
  343. }
  344. void RenderBeast::syncRenderOptions(const RenderBeastOptions& options)
  345. {
  346. bool filteringChanged = mCoreOptions->filtering != options.filtering;
  347. if (options.filtering == RenderBeastFiltering::Anisotropic)
  348. filteringChanged |= mCoreOptions->anisotropyMax != options.anisotropyMax;
  349. if (filteringChanged)
  350. refreshSamplerOverrides(true);
  351. *mCoreOptions = options;
  352. for (auto& cameraData : mCameraData)
  353. {
  354. cameraData.second.opaqueQueue->setStateReduction(mCoreOptions->stateReductionMode);
  355. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  356. if (transparentStateReduction == StateReduction::Material)
  357. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  358. cameraData.second.transparentQueue->setStateReduction(transparentStateReduction);
  359. }
  360. }
  361. void RenderBeast::renderAllCore(float time)
  362. {
  363. THROW_IF_NOT_CORE_THREAD;
  364. gProfilerCPU().beginSample("renderAllCore");
  365. // Note: I'm iterating over all sampler states every frame. If this ends up being a performance
  366. // issue consider handling this internally in MaterialCore which can only do it when sampler states
  367. // are actually modified after sync
  368. refreshSamplerOverrides();
  369. // Update global per-frame hardware buffers
  370. mStaticHandler->updatePerFrameBuffers(time);
  371. // Generate render queues per camera
  372. for (auto& cameraData : mCameraData)
  373. {
  374. const CameraCore* camera = cameraData.first;
  375. determineVisible(*camera);
  376. }
  377. // Render everything, target by target
  378. for (auto& renderTargetData : mRenderTargets)
  379. {
  380. SPtr<RenderTargetCore> target = renderTargetData.target;
  381. Vector<const CameraCore*>& cameras = renderTargetData.cameras;
  382. RenderAPICore::instance().beginFrame();
  383. UINT32 numCameras = (UINT32)cameras.size();
  384. for (UINT32 i = 0; i < numCameras; i++)
  385. render(renderTargetData, i);
  386. RenderAPICore::instance().endFrame();
  387. RenderAPICore::instance().swapBuffers(target);
  388. }
  389. gProfilerCPU().endSample("renderAllCore");
  390. }
  391. void RenderBeast::render(RenderTargetData& rtData, UINT32 camIdx)
  392. {
  393. gProfilerCPU().beginSample("Render");
  394. const CameraCore* camera = rtData.cameras[camIdx];
  395. CameraData& camData = mCameraData[camera];
  396. SPtr<ViewportCore> viewport = camera->getViewport();
  397. CameraShaderData cameraShaderData = getCameraShaderData(*camera);
  398. mStaticHandler->updatePerCameraBuffers(cameraShaderData);
  399. // Render scene objects to g-buffer
  400. bool hasGBuffer = ((UINT32)camera->getFlags() & (UINT32)CameraFlags::Overlay) == 0;
  401. if (hasGBuffer)
  402. {
  403. bool createGBuffer = camData.target == nullptr ||
  404. camData.target->getHDR() != mCoreOptions->hdr ||
  405. camData.target->getNumSamples() != mCoreOptions->msaa;
  406. if (createGBuffer)
  407. camData.target = RenderTargets::create(viewport, mCoreOptions->hdr, mCoreOptions->msaa);
  408. camData.target->allocate();
  409. camData.target->bindGBuffer();
  410. }
  411. else
  412. camData.target = nullptr;
  413. // Trigger pre-scene callbacks
  414. auto iterCameraCallbacks = mRenderCallbacks.find(camera);
  415. if (iterCameraCallbacks != mRenderCallbacks.end())
  416. {
  417. for (auto& callbackPair : iterCameraCallbacks->second)
  418. {
  419. const RenderCallbackData& callbackData = callbackPair.second;
  420. if (callbackData.overlay)
  421. continue;
  422. if (callbackPair.first >= 0)
  423. break;
  424. callbackData.callback();
  425. }
  426. }
  427. if (hasGBuffer)
  428. {
  429. // Render base pass
  430. const Vector<RenderQueueElement>& opaqueElements = camData.opaqueQueue->getSortedElements();
  431. for (auto iter = opaqueElements.begin(); iter != opaqueElements.end(); ++iter)
  432. {
  433. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  434. SPtr<MaterialCore> material = renderElem->material;
  435. UINT32 rendererId = renderElem->renderableId;
  436. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  437. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  438. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  439. mStaticHandler->bindPerObjectBuffers(*renderElem);
  440. if (iter->applyPass)
  441. {
  442. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  443. setPass(pass);
  444. }
  445. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  446. if (renderElem->samplerOverrides != nullptr)
  447. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  448. else
  449. setPassParams(passParams, nullptr);
  450. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  451. }
  452. camData.target->bindSceneColor();
  453. // Render light pass
  454. SPtr<MaterialCore> dirMaterial = mDirLightMat->getMaterial();
  455. SPtr<PassCore> dirPass = dirMaterial->getPass(0);
  456. setPass(dirPass);
  457. mDirLightMat->setGBuffer(camData.target);
  458. for (auto& light : mDirectionalLights)
  459. {
  460. if (!light.internal->getIsActive())
  461. continue;
  462. mDirLightMat->setParameters(light.internal);
  463. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  464. setPassParams(dirMaterial->getPassParameters(0), nullptr);
  465. gRendererUtility().drawScreenQuad(*viewport);
  466. }
  467. SPtr<MaterialCore> pointMaterial = mPointLightMat->getMaterial();
  468. SPtr<PassCore> pointPass = pointMaterial->getPass(0);
  469. setPass(pointPass);
  470. mPointLightMat->setGBuffer(camData.target);
  471. // TODO - Cull lights based on visibility, right now I just iterate over all of them.
  472. for (auto& light : mPointLights)
  473. {
  474. if (!light.internal->getIsActive())
  475. continue;
  476. mPointLightMat->setParameters(light.internal);
  477. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  478. setPassParams(dirMaterial->getPassParameters(0), nullptr);
  479. SPtr<MeshCore> mesh = light.internal->getMesh();
  480. gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0));
  481. }
  482. }
  483. else
  484. {
  485. // Prepare final render target
  486. SPtr<RenderTargetCore> target = rtData.target;
  487. RenderAPICore::instance().setRenderTarget(target);
  488. RenderAPICore::instance().setViewport(viewport->getNormArea());
  489. // If first camera in render target, prepare the render target
  490. if (camIdx == 0)
  491. {
  492. UINT32 clearBuffers = 0;
  493. if (viewport->getRequiresColorClear())
  494. clearBuffers |= FBT_COLOR;
  495. if (viewport->getRequiresDepthClear())
  496. clearBuffers |= FBT_DEPTH;
  497. if (viewport->getRequiresStencilClear())
  498. clearBuffers |= FBT_STENCIL;
  499. if (clearBuffers != 0)
  500. {
  501. RenderAPICore::instance().clearViewport(clearBuffers, viewport->getClearColor(),
  502. viewport->getClearDepthValue(), viewport->getClearStencilValue());
  503. }
  504. }
  505. }
  506. // Render transparent objects (TODO - No lighting yet)
  507. const Vector<RenderQueueElement>& transparentElements = camData.transparentQueue->getSortedElements();
  508. for (auto iter = transparentElements.begin(); iter != transparentElements.end(); ++iter)
  509. {
  510. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  511. SPtr<MaterialCore> material = renderElem->material;
  512. UINT32 rendererId = renderElem->renderableId;
  513. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  514. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  515. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  516. mStaticHandler->bindPerObjectBuffers(*renderElem);
  517. if (iter->applyPass)
  518. {
  519. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  520. setPass(pass);
  521. }
  522. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  523. if (renderElem->samplerOverrides != nullptr)
  524. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  525. else
  526. setPassParams(passParams, nullptr);
  527. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  528. }
  529. camData.opaqueQueue->clear();
  530. camData.transparentQueue->clear();
  531. // Render non-overlay post-scene callbacks
  532. if (iterCameraCallbacks != mRenderCallbacks.end())
  533. {
  534. for (auto& callbackPair : iterCameraCallbacks->second)
  535. {
  536. const RenderCallbackData& callbackData = callbackPair.second;
  537. if (callbackData.overlay || callbackPair.first < 0)
  538. continue;
  539. callbackData.callback();
  540. }
  541. }
  542. if (hasGBuffer)
  543. {
  544. // TODO - Instead of doing a separate resolve here I could potentially perform a resolve directly in the
  545. // light pass.
  546. camData.target->resolve();
  547. }
  548. // Render overlay post-scene callbacks
  549. if (iterCameraCallbacks != mRenderCallbacks.end())
  550. {
  551. for (auto& callbackPair : iterCameraCallbacks->second)
  552. {
  553. const RenderCallbackData& callbackData = callbackPair.second;
  554. if (!callbackData.overlay)
  555. continue;
  556. callbackData.callback();
  557. }
  558. }
  559. if (hasGBuffer)
  560. camData.target->release();
  561. gProfilerCPU().endSample("Render");
  562. }
  563. void RenderBeast::determineVisible(const CameraCore& camera)
  564. {
  565. CameraData& cameraData = mCameraData[&camera];
  566. UINT64 cameraLayers = camera.getLayers();
  567. ConvexVolume worldFrustum = camera.getWorldFrustum();
  568. // Update per-object param buffers and queue render elements
  569. for (auto& renderableData : mRenderables)
  570. {
  571. RenderableCore* renderable = renderableData.renderable;
  572. RenderableHandler* controller = renderableData.controller;
  573. UINT32 renderableType = renderable->getRenderableType();
  574. UINT32 rendererId = renderable->getRendererId();
  575. if ((renderable->getLayer() & cameraLayers) == 0)
  576. continue;
  577. // Do frustum culling
  578. // TODO - This is bound to be a bottleneck at some point. When it is ensure that intersect
  579. // methods use vector operations, as it is trivial to update them.
  580. const Sphere& boundingSphere = mWorldBounds[rendererId].getSphere();
  581. if (worldFrustum.intersects(boundingSphere))
  582. {
  583. // More precise with the box
  584. const AABox& boundingBox = mWorldBounds[rendererId].getBox();
  585. if (worldFrustum.intersects(boundingBox))
  586. {
  587. float distanceToCamera = (camera.getPosition() - boundingBox.getCenter()).length();
  588. for (auto& renderElem : renderableData.elements)
  589. {
  590. bool isTransparent = (renderElem.material->getShader()->getFlags() & (UINT32)ShaderFlags::Transparent) != 0;
  591. if (isTransparent)
  592. cameraData.transparentQueue->add(&renderElem, distanceToCamera);
  593. else
  594. cameraData.opaqueQueue->add(&renderElem, distanceToCamera);
  595. }
  596. }
  597. }
  598. }
  599. cameraData.opaqueQueue->sort();
  600. cameraData.transparentQueue->sort();
  601. }
  602. Vector2 RenderBeast::getDeviceZTransform(const Matrix4& projMatrix)
  603. {
  604. Vector2 output;
  605. output.x = 1.0f / projMatrix[2][2];
  606. output.y = projMatrix[2][3] / projMatrix[2][2];
  607. return output;
  608. }
  609. CameraShaderData RenderBeast::getCameraShaderData(const CameraCore& camera)
  610. {
  611. CameraShaderData data;
  612. data.proj = camera.getProjectionMatrixRS();
  613. data.view = camera.getViewMatrix();
  614. data.viewProj = data.proj * data.view;
  615. data.invProj = data.proj.inverse();
  616. data.viewDir = camera.getForward();
  617. data.viewOrigin = camera.getPosition();
  618. data.deviceZToWorldZ = getDeviceZTransform(data.proj);
  619. SPtr<ViewportCore> viewport = camera.getViewport();
  620. SPtr<RenderTargetCore> rt = viewport->getTarget();
  621. float halfWidth = viewport->getWidth() / 2.0f;
  622. float halfHeight = viewport->getHeight() / 2.0f;
  623. float rtWidth = (float)rt->getProperties().getWidth();
  624. float rtHeight = (float)rt->getProperties().getHeight();
  625. RenderAPICore& rapi = RenderAPICore::instance();
  626. data.clipToUVScaleOffset.x = (halfWidth / 2.0f) / rtWidth;
  627. data.clipToUVScaleOffset.y = (halfHeight / 2.0f) / rtHeight;
  628. data.clipToUVScaleOffset.z = (viewport->getX() + halfWidth + rapi.getHorizontalTexelOffset()) / rtWidth;
  629. data.clipToUVScaleOffset.w = (viewport->getY() + halfHeight + rapi.getHorizontalTexelOffset()) / rtHeight;
  630. return data;
  631. }
  632. void RenderBeast::refreshSamplerOverrides(bool force)
  633. {
  634. for (auto& entry : mSamplerOverrides)
  635. {
  636. SPtr<MaterialCore> material = entry.first;
  637. if (force)
  638. {
  639. SamplerOverrideUtility::destroySamplerOverrides(entry.second);
  640. entry.second = SamplerOverrideUtility::generateSamplerOverrides(material, mCoreOptions);
  641. }
  642. else
  643. {
  644. MaterialSamplerOverrides* materialOverrides = entry.second;
  645. UINT32 numPasses = material->getNumPasses();
  646. assert(numPasses == materialOverrides->numPasses);
  647. for (UINT32 i = 0; i < numPasses; i++)
  648. {
  649. SPtr<PassParametersCore> passParams = material->getPassParameters(i);
  650. PassSamplerOverrides& passOverrides = materialOverrides->passes[i];
  651. for (UINT32 j = 0; j < PassParametersCore::NUM_PARAMS; j++)
  652. {
  653. StageSamplerOverrides& stageOverrides = passOverrides.stages[j];
  654. SPtr<GpuParamsCore> params = passParams->getParamByIdx(j);
  655. if (params == nullptr)
  656. continue;
  657. const GpuParamDesc& paramDesc = params->getParamDesc();
  658. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  659. {
  660. UINT32 slot = iter->second.slot;
  661. SPtr<SamplerStateCore> samplerState = params->getSamplerState(slot);
  662. assert(stageOverrides.numStates > slot);
  663. if (samplerState != stageOverrides.stateOverrides[slot])
  664. {
  665. if (samplerState != nullptr)
  666. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(samplerState, mCoreOptions);
  667. else
  668. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(SamplerStateCore::getDefault(), mCoreOptions);;
  669. }
  670. }
  671. }
  672. }
  673. }
  674. }
  675. }
  676. void RenderBeast::setPass(const SPtr<PassCore>& pass)
  677. {
  678. THROW_IF_NOT_CORE_THREAD;
  679. RenderAPICore& rs = RenderAPICore::instance();
  680. struct StageData
  681. {
  682. GpuProgramType type;
  683. bool enable;
  684. SPtr<GpuProgramCore> program;
  685. };
  686. const UINT32 numStages = 6;
  687. StageData stages[numStages] =
  688. {
  689. { GPT_VERTEX_PROGRAM, pass->hasVertexProgram(), pass->getVertexProgram() },
  690. { GPT_FRAGMENT_PROGRAM, pass->hasFragmentProgram(), pass->getFragmentProgram() },
  691. { GPT_GEOMETRY_PROGRAM, pass->hasGeometryProgram(), pass->getGeometryProgram() },
  692. { GPT_HULL_PROGRAM, pass->hasHullProgram(), pass->getHullProgram() },
  693. { GPT_DOMAIN_PROGRAM, pass->hasDomainProgram(), pass->getDomainProgram() },
  694. { GPT_COMPUTE_PROGRAM, pass->hasComputeProgram(), pass->getComputeProgram() }
  695. };
  696. for (UINT32 i = 0; i < numStages; i++)
  697. {
  698. const StageData& stage = stages[i];
  699. if (stage.enable)
  700. rs.bindGpuProgram(stage.program);
  701. else
  702. rs.unbindGpuProgram(stage.type);
  703. }
  704. // Set up non-texture related pass settings
  705. if (pass->getBlendState() != nullptr)
  706. rs.setBlendState(pass->getBlendState());
  707. else
  708. rs.setBlendState(BlendStateCore::getDefault());
  709. if (pass->getDepthStencilState() != nullptr)
  710. rs.setDepthStencilState(pass->getDepthStencilState(), pass->getStencilRefValue());
  711. else
  712. rs.setDepthStencilState(DepthStencilStateCore::getDefault(), pass->getStencilRefValue());
  713. if (pass->getRasterizerState() != nullptr)
  714. rs.setRasterizerState(pass->getRasterizerState());
  715. else
  716. rs.setRasterizerState(RasterizerStateCore::getDefault());
  717. }
  718. void RenderBeast::setPassParams(const SPtr<PassParametersCore>& passParams, const PassSamplerOverrides* samplerOverrides)
  719. {
  720. THROW_IF_NOT_CORE_THREAD;
  721. RenderAPICore& rs = RenderAPICore::instance();
  722. struct StageData
  723. {
  724. GpuProgramType type;
  725. SPtr<GpuParamsCore> params;
  726. };
  727. const UINT32 numStages = 6;
  728. StageData stages[numStages] =
  729. {
  730. { GPT_VERTEX_PROGRAM, passParams->mVertParams },
  731. { GPT_FRAGMENT_PROGRAM, passParams->mFragParams },
  732. { GPT_GEOMETRY_PROGRAM, passParams->mGeomParams },
  733. { GPT_HULL_PROGRAM, passParams->mHullParams },
  734. { GPT_DOMAIN_PROGRAM, passParams->mDomainParams },
  735. { GPT_COMPUTE_PROGRAM, passParams->mComputeParams }
  736. };
  737. for (UINT32 i = 0; i < numStages; i++)
  738. {
  739. const StageData& stage = stages[i];
  740. SPtr<GpuParamsCore> params = stage.params;
  741. if (params == nullptr)
  742. continue;
  743. const GpuParamDesc& paramDesc = params->getParamDesc();
  744. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  745. {
  746. SPtr<SamplerStateCore> samplerState;
  747. if (samplerOverrides != nullptr)
  748. samplerState = samplerOverrides->stages[i].stateOverrides[iter->second.slot];
  749. else
  750. samplerState = params->getSamplerState(iter->second.slot);
  751. if (samplerState == nullptr)
  752. rs.setSamplerState(stage.type, iter->second.slot, SamplerStateCore::getDefault());
  753. else
  754. rs.setSamplerState(stage.type, iter->second.slot, samplerState);
  755. }
  756. for (auto iter = paramDesc.textures.begin(); iter != paramDesc.textures.end(); ++iter)
  757. {
  758. SPtr<TextureCore> texture = params->getTexture(iter->second.slot);
  759. if (!params->isLoadStoreTexture(iter->second.slot))
  760. {
  761. if (texture == nullptr)
  762. rs.setTexture(stage.type, iter->second.slot, false, nullptr);
  763. else
  764. rs.setTexture(stage.type, iter->second.slot, true, texture);
  765. }
  766. else
  767. {
  768. const TextureSurface& surface = params->getLoadStoreSurface(iter->second.slot);
  769. if (texture == nullptr)
  770. rs.setLoadStoreTexture(stage.type, iter->second.slot, false, nullptr, surface);
  771. else
  772. rs.setLoadStoreTexture(stage.type, iter->second.slot, true, texture, surface);
  773. }
  774. }
  775. rs.setConstantBuffers(stage.type, params);
  776. }
  777. }
  778. }