| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184 |
- //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
- //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
- #include "BsLightProbes.h"
- #include "Renderer/BsLightProbeVolume.h"
- #include "RenderAPI/BsGpuBuffer.h"
- #include "BsRendererView.h"
- #include "BsRenderBeastIBLUtility.h"
- #include "Mesh/BsMesh.h"
- #include "RenderAPI/BsVertexDataDesc.h"
- #include "Material/BsGpuParamsSet.h"
- #include "Renderer/BsRendererUtility.h"
- #include "Renderer/BsSkybox.h"
- #include "BsRendererTextures.h"
- namespace bs { namespace ct
- {
- ShaderVariation TetrahedraRenderMat::VAR_NoMSAA = ShaderVariation({
- ShaderVariation::Param("MSAA", false)
- });
- ShaderVariation TetrahedraRenderMat::VAR_MSAA = ShaderVariation({
- ShaderVariation::Param("MSAA", true)
- });
- TetrahedraRenderMat::TetrahedraRenderMat()
- {
- SPtr<GpuParams> params = mParamsSet->getGpuParams();
- params->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthBufferTex", mDepthBufferTex);
- if(params->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferSamp"))
- {
- SAMPLER_STATE_DESC pointSampDesc;
- pointSampDesc.minFilter = FO_POINT;
- pointSampDesc.magFilter = FO_POINT;
- pointSampDesc.mipFilter = FO_POINT;
- pointSampDesc.addressMode.u = TAM_CLAMP;
- pointSampDesc.addressMode.v = TAM_CLAMP;
- pointSampDesc.addressMode.w = TAM_CLAMP;
- SPtr<SamplerState> pointSampState = SamplerState::create(pointSampDesc);
- params->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferSamp", pointSampState);
- }
- }
- void TetrahedraRenderMat::_initVariations(ShaderVariations& variations)
- {
- variations.add(VAR_NoMSAA);
- variations.add(VAR_MSAA);
- }
- void TetrahedraRenderMat::execute(const RendererView& view, const SPtr<Texture>& sceneDepth, const SPtr<Mesh>& mesh,
- const SPtr<RenderTexture>& output)
- {
- mDepthBufferTex.set(sceneDepth);
- mParamsSet->setParamBlockBuffer("PerCamera", view.getPerViewBuffer(), true);
- RenderAPI& rapi = RenderAPI::instance();
- rapi.setRenderTarget(output);
- gRendererUtility().setPass(mMaterial);
- gRendererUtility().setPassParams(mParamsSet);
- gRendererUtility().draw(mesh);
- }
- void TetrahedraRenderMat::getOutputDesc(const RendererView& view, POOLED_RENDER_TEXTURE_DESC& colorDesc,
- POOLED_RENDER_TEXTURE_DESC& depthDesc)
- {
- const RendererViewProperties& viewProps = view.getProperties();
- UINT32 width = viewProps.viewRect.width;
- UINT32 height = viewProps.viewRect.height;
- UINT32 numSamples = viewProps.numSamples;
- colorDesc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_R16U, width, height, TU_RENDERTARGET, numSamples);
- depthDesc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_D32, width, height, TU_DEPTHSTENCIL, numSamples);
- }
- TetrahedraRenderMat* TetrahedraRenderMat::getVariation(bool msaa)
- {
- if (msaa)
- return get(VAR_MSAA);
- return get(VAR_NoMSAA);
- }
- IrradianceEvaluateParamDef gIrradianceEvaluateParamDef;
- ShaderVariation IrradianceEvaluateMat::VAR_MSAA_Probes = ShaderVariation({
- ShaderVariation::Param("MSAA_COUNT", 2),
- ShaderVariation::Param("SKY_ONLY", false)
- });
- ShaderVariation IrradianceEvaluateMat::VAR_NoMSAA_Probes = ShaderVariation({
- ShaderVariation::Param("MSAA_COUNT", 1),
- ShaderVariation::Param("SKY_ONLY", false)
- });
- ShaderVariation IrradianceEvaluateMat::VAR_MSAA_Sky = ShaderVariation({
- ShaderVariation::Param("MSAA_COUNT", 2),
- ShaderVariation::Param("SKY_ONLY", true)
- });
- ShaderVariation IrradianceEvaluateMat::VAR_NoMSAA_Sky = ShaderVariation({
- ShaderVariation::Param("MSAA_COUNT", 1),
- ShaderVariation::Param("SKY_ONLY", true)
- });
- IrradianceEvaluateMat::IrradianceEvaluateMat()
- :mGBufferParams(mMaterial, mParamsSet)
- {
- mSkyOnly = mVariation.getBool("SKY_ONLY");
- SPtr<GpuParams> params = mParamsSet->getGpuParams();
- params->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSkyIrradianceTex", mParamSkyIrradianceTex);
- params->getTextureParam(GPT_FRAGMENT_PROGRAM, "gAmbientOcclusionTex", mParamAmbientOcclusionTex);
- if(!mSkyOnly)
- {
- params->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mParamInputTex);
- params->getBufferParam(GPT_FRAGMENT_PROGRAM, "gSHCoeffs", mParamSHCoeffsBuffer);
- params->getBufferParam(GPT_FRAGMENT_PROGRAM, "gTetrahedra", mParamTetrahedraBuffer);
- params->getBufferParam(GPT_FRAGMENT_PROGRAM, "gTetFaces", mParamTetFacesBuffer);
- }
- mParamBuffer = gIrradianceEvaluateParamDef.createBuffer();
- mParamsSet->setParamBlockBuffer("Params", mParamBuffer, true);
- }
- void IrradianceEvaluateMat::_initVariations(ShaderVariations& variations)
- {
- variations.add(VAR_MSAA_Probes);
- variations.add(VAR_MSAA_Sky);
- variations.add(VAR_NoMSAA_Probes);
- variations.add(VAR_NoMSAA_Sky);
- }
- void IrradianceEvaluateMat::execute(const RendererView& view, const GBufferTextures& gbuffer,
- const SPtr<Texture>& lightProbeIndices, const LightProbesInfo& lightProbesInfo, const Skybox* skybox,
- const SPtr<Texture>& ambientOcclusion, const SPtr<RenderTexture>& output)
- {
- const RendererViewProperties& viewProps = view.getProperties();
- mGBufferParams.bind(gbuffer);
- float skyBrightness = 1.0f;
- SPtr<Texture> skyIrradiance;
- if (skybox != nullptr)
- {
- skyIrradiance = skybox->getIrradiance();
- skyBrightness = skybox->getBrightness();
- }
- if(skyIrradiance == nullptr)
- skyIrradiance = RendererTextures::defaultIndirect;
- mParamSkyIrradianceTex.set(skyIrradiance);
- mParamAmbientOcclusionTex.set(ambientOcclusion);
- if(!mSkyOnly)
- {
- mParamInputTex.set(lightProbeIndices);
- mParamSHCoeffsBuffer.set(lightProbesInfo.shCoefficients);
- mParamTetrahedraBuffer.set(lightProbesInfo.tetrahedra);
- mParamTetFacesBuffer.set(lightProbesInfo.faces);
- }
- gIrradianceEvaluateParamDef.gSkyBrightness.set(mParamBuffer, skyBrightness);
- gIrradianceEvaluateParamDef.gNumTetrahedra.set(mParamBuffer, lightProbesInfo.numTetrahedra);
- mParamBuffer->flushToGPU();
- mParamsSet->setParamBlockBuffer("PerCamera", view.getPerViewBuffer(), true);
- // Render
- RenderAPI& rapi = RenderAPI::instance();
- rapi.setRenderTarget(output, FBT_DEPTH | FBT_STENCIL, RT_COLOR0);
- gRendererUtility().setPass(mMaterial);
- gRendererUtility().setPassParams(mParamsSet);
- gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)viewProps.viewRect.width,
- (float)viewProps.viewRect.height));
- rapi.setRenderTarget(nullptr);
- }
- IrradianceEvaluateMat* IrradianceEvaluateMat::getVariation(UINT32 msaaCount, bool skyOnly)
- {
- if(skyOnly)
- {
- if (msaaCount > 1)
- return get(VAR_MSAA_Sky);
- return get(VAR_NoMSAA_Sky);
- }
- else
- {
- if (msaaCount > 1)
- return get(VAR_MSAA_Probes);
- return get(VAR_NoMSAA_Probes);
- }
- }
- /** Hash value generator for std::pair<INT32, INT32>. */
- struct pair_hash
- {
- size_t operator()(const std::pair<INT32, INT32>& key) const
- {
- size_t hash = 0;
- bs::hash_combine(hash, key.first);
- bs::hash_combine(hash, key.second);
- return hash;
- }
- };
- /** Information about a single tetrahedron, for use on the GPU. */
- struct TetrahedronDataGPU
- {
- UINT32 indices[4];
- Matrix3x4 transform;
- };
- /** Information about a single tetrahedron face, for use on the GPU. */
- struct TetrahedronFaceDataGPU
- {
- Vector3 corners[3];
- Vector3 normals[3];
- UINT32 isQuadratic;
- };
- LightProbes::LightProbes()
- :mTetrahedronVolumeDirty(false), mMaxCoefficients(0), mMaxTetrahedra(0), mMaxFaces(0), mNumValidTetrahedra(0)
- { }
- void LightProbes::notifyAdded(LightProbeVolume* volume)
- {
- UINT32 handle = (UINT32)mVolumes.size();
- VolumeInfo info;
- info.volume = volume;
- info.isDirty = true;
- mVolumes.push_back(info);
- volume->setRendererId(handle);
- notifyDirty(volume);
- }
- void LightProbes::notifyDirty(LightProbeVolume* volume)
- {
- UINT32 handle = volume->getRendererId();
- mVolumes[handle].isDirty = true;
- mTetrahedronVolumeDirty = true;
- }
- void LightProbes::notifyRemoved(LightProbeVolume* volume)
- {
- UINT32 handle = volume->getRendererId();
- LightProbeVolume* lastVolume = mVolumes.back().volume;
- UINT32 lastHandle = lastVolume->getRendererId();
-
- if (handle != lastHandle)
- {
- // Swap current last element with the one we want to erase
- std::swap(mVolumes[handle], mVolumes[lastHandle]);
- lastVolume->setRendererId(handle);
- }
-
- // Erase last (empty) element
- mVolumes.erase(mVolumes.end() - 1);
- mTetrahedronVolumeDirty = true;
- }
- void LightProbes::updateProbes()
- {
- if (!mTetrahedronVolumeDirty)
- return;
- // Move all coefficients into the global buffer
- UINT32 numCoeffs = 0;
- for(auto& entry : mVolumes)
- {
- UINT32 numProbes = (UINT32)entry.volume->getLightProbePositions().size();
- numCoeffs += numProbes;
- }
- if(numCoeffs > mMaxCoefficients)
- {
- UINT32 newSize = Math::divideAndRoundUp(numCoeffs, 32U) * 32U;
- resizeCoefficientBuffer(newSize);
- }
- UINT32 writePos = 0;
- for(auto& entry : mVolumes)
- {
- UINT32 numProbes = (UINT32)entry.volume->getLightProbePositions().size();
- UINT32 size = numProbes * sizeof(LightProbeSHCoefficients);
- SPtr<GpuBuffer> localBuffer = entry.volume->getCoefficientsBuffer();
-
- // Note: Some of the coefficients might still be dirty (unrendered). Check for this and write them as black?
- mProbeCoefficientsGPU->copyData(*localBuffer, 0, writePos, size);
- writePos += size;
- }
- // Gather all positions
- UINT32 bufferOffset = 0;
- for(auto& entry : mVolumes)
- {
- const Vector<LightProbeInfo>& infos = entry.volume->getLightProbeInfos();
- const Vector<Vector3>& positions = entry.volume->getLightProbePositions();
- UINT32 numProbes = entry.volume->getNumActiveProbes();
-
- if (numProbes == 0)
- continue;
- Vector3 offset = entry.volume->getPosition();
- Quaternion rotation = entry.volume->getRotation();
- for(UINT32 i = 0; i < numProbes; i++)
- {
- Vector3 localPos = positions[i];
- Vector3 transformedPos = rotation.rotate(localPos) + offset;
- mTempTetrahedronPositions.push_back(transformedPos);
- mTempTetrahedronBufferIndices.push_back(bufferOffset + infos[i].bufferIdx);
- }
- bufferOffset += (UINT32)positions.size();
- }
- mTetrahedronInfos.clear();
- Vector<TetrahedronFaceData> outerFaces;
- generateTetrahedronData(mTempTetrahedronPositions, mTetrahedronInfos, outerFaces, true);
- // Find valid tetrahedrons
- UINT32 numTetrahedra = (UINT32)mTetrahedronInfos.size();
- bool* validTets = (bool*)bs_stack_alloc(sizeof(bool) * numTetrahedra);
- mNumValidTetrahedra = 0;
- for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++)
- {
- const TetrahedronData& entry = mTetrahedronInfos[i];
- const Vector3& P1 = mTempTetrahedronPositions[entry.volume.vertices[0]];
- const Vector3& P2 = mTempTetrahedronPositions[entry.volume.vertices[1]];
- const Vector3& P3 = mTempTetrahedronPositions[entry.volume.vertices[2]];
- const Vector3& P4 = mTempTetrahedronPositions[entry.volume.vertices[3]];
- Vector3 E1 = P1 - P4;
- Vector3 E2 = P2 - P4;
- Vector3 E3 = P3 - P4;
- // If tetrahedron is co-planar just ignore it, shader will use some other nearby one instead. We can't
- // handle coplanar tetrahedrons because the matrix is not invertible, and for nearly co-planar ones the
- // math breaks down because of precision issues.
- validTets[i] = fabs(Vector3::dot(Vector3::normalize(Vector3::cross(E1, E2)), E3)) > 0.0001f;
- if (validTets[i])
- mNumValidTetrahedra++;
- }
- UINT32 numValidFaces = 0;
- for(auto& entry : outerFaces)
- {
- if (validTets[entry.tetrahedron])
- numValidFaces++;
- }
- // Generate a mesh out of all the tetrahedron triangles
- // Note: Currently the entire volume is rendered as a single large mesh, which will isn't optimal as we can't
- // perform frustum culling. A better option would be to split the mesh into multiple smaller volumes, do
- // frustum culling and possibly even sort by distance from camera.
- UINT32 numVertices = mNumValidTetrahedra * 4 * 3 + numValidFaces * 9 * 3;
- SPtr<VertexDataDesc> vertexDesc = bs_shared_ptr_new<VertexDataDesc>();
- vertexDesc->addVertElem(VET_FLOAT3, VES_POSITION);
- vertexDesc->addVertElem(VET_UINT1, VES_TEXCOORD);
- SPtr<MeshData> meshData = MeshData::create(numVertices, numVertices, vertexDesc);
- auto posIter = meshData->getVec3DataIter(VES_POSITION);
- auto idIter = meshData->getDWORDDataIter(VES_TEXCOORD);
- UINT32* indices = meshData->getIndices32();
- // Insert inner tetrahedron triangles
- UINT32 tetIdx = 0;
- for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++)
- {
- if (!validTets[i])
- continue;
- const Tetrahedron& volume = mTetrahedronInfos[i].volume;
- Vector3 center(BsZero);
- for(UINT32 j = 0; j < 4; j++)
- center += mTempTetrahedronPositions[volume.vertices[j]];
- center /= 4.0f;
- static const UINT32 Permutations[4][3] =
- {
- { 0, 1, 2 },
- { 0, 1, 3 },
- { 0, 2, 3 },
- { 1, 2, 3 }
- };
- for(UINT32 j = 0; j < 4; j++)
- {
- Vector3 A = mTempTetrahedronPositions[volume.vertices[Permutations[j][0]]];
- Vector3 B = mTempTetrahedronPositions[volume.vertices[Permutations[j][1]]];
- Vector3 C = mTempTetrahedronPositions[volume.vertices[Permutations[j][2]]];
- // Make sure the triangle is clockwise, facing away from the center
- Vector3 e0 = A - C;
- Vector3 e1 = B - C;
- Vector3 normal = e0.cross(e1);
- if (normal.dot(A - center) > 0.0f)
- std::swap(B, C);
- posIter.addValue(A);
- posIter.addValue(B);
- posIter.addValue(C);
- idIter.addValue(tetIdx);
- idIter.addValue(tetIdx);
- idIter.addValue(tetIdx);
- indices[0] = tetIdx * 4 * 3 + j * 3 + 0;
- indices[1] = tetIdx * 4 * 3 + j * 3 + 1;
- indices[2] = tetIdx * 4 * 3 + j * 3 + 2;
- indices += 3;
- }
- tetIdx++;
- }
- // Generate an edge map for outer faces (required for step below)
- struct Edge
- {
- UINT32 vertInner[2];
- UINT32 vertOuter[2];
- UINT32 face[2];
- };
- FrameUnorderedMap<std::pair<INT32, INT32>, Edge, pair_hash> edgeMap;
- for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++)
- {
- if (!validTets[outerFaces[i].tetrahedron])
- continue;
- for (UINT32 j = 0; j < 3; ++j)
- {
- UINT32 v0 = outerFaces[i].innerVertices[j];
- UINT32 v1 = outerFaces[i].innerVertices[(j + 1) % 3];
- // Keep the same ordering so other faces can find the same edge
- if (v0 > v1)
- std::swap(v0, v1);
- auto iterFind = edgeMap.find(std::make_pair((INT32)v0, (INT32)v1));
- if (iterFind != edgeMap.end())
- {
- iterFind->second.face[1] = i;
- }
- else
- {
- Edge edge;
- edge.vertInner[0] = outerFaces[i].innerVertices[j];
- edge.vertInner[1] = outerFaces[i].innerVertices[(j + 1) % 3];
- edge.vertOuter[0] = outerFaces[i].outerVertices[j];
- edge.vertOuter[1] = outerFaces[i].outerVertices[(j + 1) % 3];
- edge.face[0] = i;
- edge.face[1] = -1;
- edgeMap.insert(std::make_pair(std::make_pair((INT32)v0, (INT32)v1), edge));
- }
- }
- }
- // Generate front and back triangles for extruded outer faces
- UINT32 faceIdx = 0;
- for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++)
- {
- if (!validTets[outerFaces[i].tetrahedron])
- continue;
- const TetrahedronFaceData& entry = outerFaces[i];
- static const UINT32 Permutations[2][3] = { {0, 1, 2 }, { 3, 4, 5} };
- // Make sure the triangle is clockwise, facing away from the center
- Vector3 center(BsZero);
- for (UINT32 k = 0; k < 3; k++)
- {
- center += mTempTetrahedronPositions[entry.innerVertices[k]];
- center += mTempTetrahedronPositions[entry.outerVertices[k]];
- }
- center /= 6.0f;
- for(UINT32 j = 0; j < 2; ++j)
- {
- UINT32 idxA = Permutations[j][0];
- UINT32 idxB = Permutations[j][1];
- UINT32 idxC = Permutations[j][2];
- idxA = idxA > 2 ? entry.outerVertices[idxA - 3] : entry.innerVertices[idxA];
- idxB = idxB > 2 ? entry.outerVertices[idxB - 3] : entry.innerVertices[idxB];
- idxC = idxC > 2 ? entry.outerVertices[idxC - 3] : entry.innerVertices[idxC];
-
- Vector3 A = mTempTetrahedronPositions[idxA];
- Vector3 B = mTempTetrahedronPositions[idxB];
- Vector3 C = mTempTetrahedronPositions[idxC];
- Vector3 e0 = A - C;
- Vector3 e1 = B - C;
- Vector3 normal = e0.cross(e1);
- if (normal.dot(A - center) > 0.0f)
- std::swap(A, B);
- posIter.addValue(A);
- posIter.addValue(B);
- posIter.addValue(C);
- idIter.addValue(tetIdx + faceIdx);
- idIter.addValue(tetIdx + faceIdx);
- idIter.addValue(tetIdx + faceIdx);
- indices[0] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 0;
- indices[1] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 1;
- indices[2] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 2;
- indices += 3;
- }
- faceIdx++;
- }
- // Generate sides for extruded outer faces
- UINT32 sideIdx = 0;
- for(auto& entry : edgeMap)
- {
- const Edge& edge = entry.second;
- for (UINT32 i = 0; i < 2; i++)
- {
- const TetrahedronFaceData& face = outerFaces[edge.face[i]];
- // Make sure the triangle is clockwise, facing away from the center
- Vector3 center(BsZero);
- for (UINT32 k = 0; k < 3; k++)
- {
- center += mTempTetrahedronPositions[face.innerVertices[k]];
- center += mTempTetrahedronPositions[face.outerVertices[k]];
- }
- center /= 6.0f;
- static const UINT32 Permutations[2][3] = { {0, 1, 2 }, { 1, 2, 3} };
- for(UINT32 j = 0; j < 2; ++j)
- {
- UINT32 idxA = Permutations[j][0];
- UINT32 idxB = Permutations[j][1];
- UINT32 idxC = Permutations[j][2];
- idxA = idxA > 1 ? edge.vertOuter[idxA - 2] : edge.vertInner[idxA];
- idxB = idxB > 1 ? edge.vertOuter[idxB - 2] : edge.vertInner[idxB];
- idxC = idxC > 1 ? edge.vertOuter[idxC - 2] : edge.vertInner[idxC];
-
- Vector3 A = mTempTetrahedronPositions[idxA];
- Vector3 B = mTempTetrahedronPositions[idxB];
- Vector3 C = mTempTetrahedronPositions[idxC];
- Vector3 e0 = A - C;
- Vector3 e1 = B - C;
- Vector3 normal = e0.cross(e1);
- if (normal.dot(A - center) > 0.0f)
- std::swap(A, B);
- posIter.addValue(A);
- posIter.addValue(B);
- posIter.addValue(C);
- idIter.addValue(tetIdx + edge.face[i]);
- idIter.addValue(tetIdx + edge.face[i]);
- idIter.addValue(tetIdx + edge.face[i]);
- indices[0] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 0;
- indices[1] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 1;
- indices[2] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 2;
- indices += 3;
- }
- sideIdx++;
- }
- }
- // Generate "caps" on the end of the extruded volume
- UINT32 capIdx = 0;
- for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++)
- {
- if (!validTets[outerFaces[i].tetrahedron])
- continue;
- const TetrahedronFaceData& entry = outerFaces[i];
- Vector3 A = mTempTetrahedronPositions[entry.outerVertices[0]];
- Vector3 B = mTempTetrahedronPositions[entry.outerVertices[1]];
- Vector3 C = mTempTetrahedronPositions[entry.outerVertices[2]];
- // Make sure the triangle is clockwise, facing toward the center
- const Tetrahedron& tet = mTetrahedronInfos[entry.tetrahedron].volume;
- Vector3 center(BsZero);
- for(UINT32 j = 0; j < 4; j++)
- center += mTempTetrahedronPositions[tet.vertices[j]];
- center /= 4.0f;
- Vector3 e0 = A - C;
- Vector3 e1 = B - C;
- Vector3 normal = e0.cross(e1);
- if (normal.dot(A - center) < 0.0f)
- std::swap(B, C);
- posIter.addValue(A);
- posIter.addValue(B);
- posIter.addValue(C);
- idIter.addValue(-1);
- idIter.addValue(-1);
- idIter.addValue(-1);
- indices[0] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 0;
- indices[1] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 1;
- indices[2] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 2;
- indices += 3;
- capIdx++;
- }
- mVolumeMesh = Mesh::create(meshData);
- // Map vertices to actual SH coefficient indices, and write GPU buffer with tetrahedron information
- if ((mNumValidTetrahedra + numValidFaces) > mMaxTetrahedra)
- {
- UINT32 newSize = Math::divideAndRoundUp(mNumValidTetrahedra + numValidFaces, 64U) * 64U;
- resizeTetrahedronBuffer(newSize);
- }
- TetrahedronDataGPU* dst = (TetrahedronDataGPU*)mTetrahedronInfosGPU->lock(0, mTetrahedronInfosGPU->getSize(),
- GBL_WRITE_ONLY_DISCARD);
- // Write inner tetrahedron data
- for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++)
- {
- if (!validTets[i])
- continue;
- TetrahedronData& entry = mTetrahedronInfos[i];
- for(UINT32 j = 0; j < 4; ++j)
- entry.volume.vertices[j] = mTempTetrahedronBufferIndices[entry.volume.vertices[j]];
- memcpy(dst->indices, entry.volume.vertices, sizeof(UINT32) * 4);
- memcpy(&dst->transform, &entry.transform, sizeof(float) * 12);
- dst++;
- }
- // Write extruded face data
- for (UINT32 i = 0; i < (UINT32)outerFaces.size(); i++)
- {
- if (!validTets[outerFaces[i].tetrahedron])
- continue;
- const TetrahedronFaceData& entry = outerFaces[i];
- UINT32 indices[4];
- indices[0] = mTempTetrahedronBufferIndices[entry.innerVertices[0]];
- indices[1] = mTempTetrahedronBufferIndices[entry.innerVertices[1]];
- indices[2] = mTempTetrahedronBufferIndices[entry.innerVertices[2]];
- indices[3] = -1;
- memcpy(dst->indices, indices, sizeof(UINT32) * 4);
- memcpy(&dst->transform, &entry.transform, sizeof(float) * 12);
- dst++;
- }
- mTetrahedronInfosGPU->unlock();
- // Write data specific to faces
- if (numValidFaces > mMaxFaces)
- {
- UINT32 newSize = Math::divideAndRoundUp(numValidFaces, 64U) * 64U;
- resizeTetrahedronFaceBuffer(newSize);
- }
- TetrahedronFaceDataGPU* faceDst = (TetrahedronFaceDataGPU*)mTetrahedronFaceInfosGPU->lock(0,
- mTetrahedronFaceInfosGPU->getSize(), GBL_WRITE_ONLY_DISCARD);
- for (UINT32 i = 0; i < (UINT32)outerFaces.size(); i++)
- {
- if (!validTets[outerFaces[i].tetrahedron])
- continue;
- const TetrahedronFaceData& entry = outerFaces[i];
- for (UINT32 j = 0; j < 3; j++)
- {
- faceDst->corners[j] = mTempTetrahedronPositions[entry.innerVertices[j]];
- faceDst->normals[j] = entry.normals[j];
- }
- faceDst->isQuadratic = entry.quadratic ? 1 : 0;
- faceDst++;
- }
- mTetrahedronFaceInfosGPU->unlock();
- bs_stack_free(validTets);
- mTempTetrahedronPositions.clear();
- mTempTetrahedronBufferIndices.clear();
- mTetrahedronVolumeDirty = false;
- }
- bool LightProbes::hasAnyProbes() const
- {
- for(auto& entry : mVolumes)
- {
- UINT32 numProbes = entry.volume->getNumActiveProbes();
- if (numProbes > 0)
- return true;
- }
- return false;
- }
- LightProbesInfo LightProbes::getInfo() const
- {
- LightProbesInfo info;
- info.shCoefficients = mProbeCoefficientsGPU;
- info.tetrahedra = mTetrahedronInfosGPU;
- info.faces = mTetrahedronFaceInfosGPU;
- info.tetrahedraVolume = mVolumeMesh;
- info.numTetrahedra = mNumValidTetrahedra;
- return info;
- }
- void LightProbes::resizeTetrahedronBuffer(UINT32 count)
- {
- GPU_BUFFER_DESC desc;
- desc.type = GBT_STRUCTURED;
- desc.elementSize = sizeof(TetrahedronDataGPU);
- desc.elementCount = count;
- desc.usage = GBU_STATIC;
- desc.format = BF_UNKNOWN;
- mTetrahedronInfosGPU = GpuBuffer::create(desc);
- mMaxTetrahedra = count;
- }
- void LightProbes::resizeTetrahedronFaceBuffer(UINT32 count)
- {
- GPU_BUFFER_DESC desc;
- desc.type = GBT_STRUCTURED;
- desc.elementSize = sizeof(TetrahedronFaceDataGPU);
- desc.elementCount = count;
- desc.usage = GBU_STATIC;
- desc.format = BF_UNKNOWN;
- mTetrahedronFaceInfosGPU = GpuBuffer::create(desc);
- mMaxFaces = count;
- }
- void LightProbes::resizeCoefficientBuffer(UINT32 count)
- {
- GPU_BUFFER_DESC desc;
- desc.type = GBT_STRUCTURED;
- desc.elementSize = sizeof(LightProbeSHCoefficients);
- desc.elementCount = count;
- desc.usage = GBU_STATIC;
- desc.format = BF_UNKNOWN;
- mProbeCoefficientsGPU = GpuBuffer::create(desc);
- mMaxCoefficients = count;
- }
- void LightProbes::generateTetrahedronData(Vector<Vector3>& positions, Vector<TetrahedronData>& tetrahedra,
- Vector<TetrahedronFaceData>& faces, bool generateExtrapolationVolume)
- {
- bs_frame_mark();
- {
- TetrahedronVolume volume = Triangulation::tetrahedralize(positions);
- if (generateExtrapolationVolume)
- {
- // Add geometry so we can handle the case when the interpolation position falls outside of the tetrahedra
- // volume. We use this geometry to project the position to the nearest face.
- UINT32 numOuterFaces = (UINT32)volume.outerFaces.size();
- // Calculate face normals for outer faces
- //// Make an edge map
- struct Edge
- {
- INT32 faces[2];
- INT32 oppositeVerts[2];
- };
- FrameUnorderedMap<std::pair<INT32, INT32>, Edge, pair_hash> edgeMap;
- for (UINT32 i = 0; i < numOuterFaces; ++i)
- {
- for (UINT32 j = 0; j < 3; ++j)
- {
- INT32 v0 = volume.outerFaces[i].vertices[j];
- INT32 v1 = volume.outerFaces[i].vertices[(j + 1) % 3];
- // Keep the same ordering so other faces can find the same edge
- if (v0 > v1)
- std::swap(v0, v1);
- auto iterFind = edgeMap.find(std::make_pair(v0, v1));
- if (iterFind != edgeMap.end())
- {
- iterFind->second.faces[1] = i;
- iterFind->second.oppositeVerts[1] = (j + 2) % 3;
- }
- else
- {
- Edge edge;
- edge.faces[0] = i;
- edge.oppositeVerts[0] = (j + 2) % 3;
- edgeMap.insert(std::make_pair(std::make_pair(v0, v1), edge));
- }
- }
- }
- //// Generate face normals
- struct FaceVertex
- {
- Vector3 normal = Vector3::ZERO;
- UINT32 outerIdx = -1;
- };
- FrameVector<Vector3> faceNormals(volume.outerFaces.size());
- for (UINT32 i = 0; i < (UINT32)volume.outerFaces.size(); ++i)
- {
- const Vector3& v0 = positions[volume.outerFaces[i].vertices[0]];
- const Vector3& v1 = positions[volume.outerFaces[i].vertices[1]];
- const Vector3& v2 = positions[volume.outerFaces[i].vertices[2]];
-
- Vector3 e0 = v1 - v0;
- Vector3 e1 = v2 - v0;
- // Make sure the normal is facing away from the center
- const Tetrahedron& tet = volume.tetrahedra[volume.outerFaces[i].tetrahedron];
- Vector3 center(BsZero);
- for(UINT32 j = 0; j < 4; j++)
- center += positions[tet.vertices[j]];
- center /= 4.0f;
- Vector3 normal = Vector3::normalize(e0.cross(e1));
- if (normal.dot(v0 - center) < 0.0f)
- normal = -normal;
- faceNormals[i] = normal;
- }
- //// Generate vertex normals
- FrameUnorderedMap<INT32, FaceVertex> faceVertices;
- for (auto& entry : edgeMap)
- {
- const Edge& edge = entry.second;
- auto accumulateNormalForEdgeVertex = [&](UINT32 v0Idx, UINT32 v1Idx)
- {
- auto iter = faceVertices.insert(std::make_pair(v0Idx, FaceVertex()));
- FaceVertex& accum = iter.first->second;
- const Vector3& v0 = positions[v0Idx];
- auto accumulateNormalForFace = [&](INT32 faceIdx, INT32 v2LocIdx)
- {
- const TetrahedronFace& face = volume.outerFaces[faceIdx];
- // Vertices on the face, that aren't the vertex we're calculating the normal for
- const Vector3& v1 = positions[v1Idx];
- const Vector3& v2 = positions[face.vertices[v2LocIdx]];
- // Weight the contribution to the normal based on the angle spanned by the triangle
- Vector3 e0 = Vector3::normalize(v1 - v0);
- Vector3 e1 = Vector3::normalize(v2 - v0);
- float weight = acos(e0.dot(e1));
- accum.normal += weight * faceNormals[faceIdx];
- };
- accumulateNormalForFace(edge.faces[0], entry.second.oppositeVerts[0]);
- accumulateNormalForFace(edge.faces[1], entry.second.oppositeVerts[1]);
- };
- accumulateNormalForEdgeVertex(entry.first.first, entry.first.second);
- accumulateNormalForEdgeVertex(entry.first.second, entry.first.first);
- }
- for (auto& entry : faceVertices)
- entry.second.normal.normalize();
- // For each face vertex, generate an outer vertex along its normal
- static const float ExtrapolationDistance = 5.0f;
- for(auto& entry : faceVertices)
- {
- entry.second.outerIdx = (UINT32)positions.size();
- Vector3 outerPos = positions[entry.first] + entry.second.normal * ExtrapolationDistance;
- positions.push_back(outerPos);
- }
- // Generate face data
- for (UINT32 i = 0; i < numOuterFaces; ++i)
- {
- const TetrahedronFace& face = volume.outerFaces[i];
- TetrahedronFaceData faceData;
- faceData.tetrahedron = face.tetrahedron;
- for (UINT32 j = 0; j < 3; j++)
- {
- const FaceVertex& faceVertex = faceVertices[face.vertices[j]];
- faceData.innerVertices[j] = face.vertices[j];
- faceData.outerVertices[j] = faceVertex.outerIdx;
- faceData.normals[j] = faceVertex.normal;
- }
- // Add a link on the source tetrahedron to the face data
- Tetrahedron& innerTet = volume.tetrahedra[face.tetrahedron];
- for(UINT32 j = 0; j < 4; j++)
- {
- if (innerTet.neighbors[j] == -1)
- {
- // Note: Not searching for opposite neighbor here. If tet. has multiple free faces then we
- // can't just pick the first one
- innerTet.neighbors[j] = (UINT32)volume.tetrahedra.size() + (UINT32)faces.size();
- break;
- }
- }
- // We need a way to project a point outside the tetrahedron volume onto an outer face, then calculate
- // triangle's barycentric coordinates. Use use the per-vertex normals to extrude the triangle face into
- // infinity.
- // Our point can be represented as:
- // p == a (p0 + t*v0) + b (p1 + t*v1) + c (p2 + t*v2)
- //
- // where a, b and c are barycentric coordinates,
- // p0, p1, p2 are the corners of the face
- // v0, v1, v2 are the vertex normals, per corner
- // t is the distance from the triangle to the point
- //
- // Essentially we're calculating the corners of a bigger triangle that's "t" units away from the
- // face, and its corners lie along the per-vertex normals. Point "p" will lie on that triangle, for which
- // we can then calculate barycentric coordinates normally.
- //
- // First we substitute: c = 1 - a - b
- // p == a (p0 + t v0) + b (p1 + t v1) + (1 - a - b) (p2 + t v2)
- // p == a (p0 + t v0) + b (p1 + t v1) + (p2 + t v2) - a (p2 + t v2) - b (p2 + t v2)
- // p == a (p0 - p2 + t v0 - t v2) + b (p1 - p2 + t v1 - t v2) + (p2 + t v2)
- //
- // And move everything to one side:
- // p - p2 - t v2 == a (p0 - p2 + t ( v0 - v2)) + b (p1 - p2 + t ( v1 - v2))
- // a (p0 - p2 + t ( v0 - v2)) + b (p1 - p2 + t ( v1 - v2)) - (p - p2 - t v2) == 0
- //
- // We rewrite it using:
- // Ap = p0 - p2
- // Av = v0 - v2
- // Bp = p1 - p2
- // Bv = v1 - v2
- // Cp = p - p2
- // Cv = -v2
- //
- // Which yields:
- // a (Ap + t Av) + b (Bp + t Bv) - (Cp + t Cv) == 0
- //
- // Which can be written in matrix form:
- //
- // M = {Ap + t Av, Bp + t Bv, Cp + t Cv}
- // a 0
- // M * [ b ] = [0]
- // -1 0
- //
- // From that we can tell that matrix M cannot be inverted, because if we multiply the zero vector with the
- // inverted matrix the result would be zero, and not [a, b, -1]. Since the matrix cannot be inverted
- // det(M) == 0.
- //
- // We can use that fact to calculate "t". After we have "t" we can calculate barycentric coordinates
- // normally.
- //
- // Solving equation det(M) == 0 yields a cubic in form:
- // p t^3 + q t^2 + r t + s = 0
- //
- // We'll convert this to monic form, by dividing by p:
- // t^3 + q/p t^2 + r/p t + s/p = 0
- //
- // Or if p ends up being zero, we end up with a quadratic instead:
- // q t^2 + r t + s = 0
- //
- // We want to create a matrix that when multiplied with the position, yields us the three coefficients,
- // which we can then use to solve for "t". For this we create a 4x3 matrix, where each row represents
- // a solution for one of the coefficients. We factor contributons to each coefficient whether they depend on
- // position x, y, z, or don't depend on position (row columns, in that order respectively).
- const Vector3& p0 = positions[faceData.innerVertices[0]];
- const Vector3& p1 = positions[faceData.innerVertices[1]];
- const Vector3& p2 = positions[faceData.innerVertices[2]];
- const Vector3& v0 = faceVertices[faceData.innerVertices[0]].normal;
- const Vector3& v1 = faceVertices[faceData.innerVertices[1]].normal;
- const Vector3& v2 = faceVertices[faceData.innerVertices[2]].normal;
- float p =
- v2.x * v1.y * v0.z -
- v1.x * v2.y * v0.z -
- v2.x * v0.y * v1.z +
- v0.x * v2.y * v1.z +
- v1.x * v0.y * v2.z -
- v0.x * v1.y * v2.z;
-
- float qx = -v1.y * v0.z + v2.y * v0.z + v0.y * v1.z - v2.y * v1.z - v0.y * v2.z + v1.y * v2.z;
- float qy = v1.x * v0.z - v2.x * v0.z - v0.x * v1.z + v2.x * v1.z + v0.x * v2.z - v1.x * v2.z;
- float qz = -v1.x * v0.y + v2.x * v0.y + v0.x * v1.y - v2.x * v1.y - v0.x * v2.y + v1.x * v2.y;
- float qw = v2.y * v1.z * p0.x - v1.y * v2.z * p0.x - v2.y * v0.z * p1.x + v0.y * v2.z * p1.x +
- v1.y * v0.z * p2.x - v0.y * v1.z * p2.x - v2.x * v1.z * p0.y + v1.x * v2.z * p0.y +
- v2.x * v0.z * p1.y - v0.x * v2.z * p1.y - v1.x * v0.z * p2.y + v0.x * v1.z * p2.y +
- v2.x * v1.y * p0.z - v1.x * v2.y * p0.z - v2.x * v0.y * p1.z + v0.x * v2.y * p1.z +
- v1.x * v0.y * p2.z - v0.x * v1.y * p2.z;
- float rx = v1.z * p0.y - v2.z * p0.y - v0.z * p1.y + v2.z * p1.y + v0.z * p2.y - v1.z * p2.y -
- v1.y * p0.z + v2.y * p0.z + v0.y * p1.z - v2.y * p1.z - v0.y * p2.z + v1.y * p2.z;
- float ry = -v1.z * p0.x + v2.z * p0.x + v0.z * p1.x - v2.z * p1.x - v0.z * p2.x + v1.z * p2.x +
- v1.x * p0.z - v2.x * p0.z - v0.x * p1.z + v2.x * p1.z + v0.x * p2.z - v1.x * p2.z;
- float rz = v1.y * p0.x - v2.y * p0.x - v0.y * p1.x + v2.y * p1.x + v0.y * p2.x - v1.y * p2.x -
- v1.x * p0.y + v2.x * p0.y + v0.x * p1.y - v2.x * p1.y - v0.x * p2.y + v1.x * p2.y;
- float rw = v2.z * p1.x * p0.y - v1.z * p2.x * p0.y - v2.z * p0.x * p1.y + v0.z * p2.x * p1.y +
- v1.z * p0.x * p2.y - v0.z * p1.x * p2.y - v2.y * p1.x * p0.z + v1.y * p2.x * p0.z +
- v2.x * p1.y * p0.z - v1.x * p2.y * p0.z + v2.y * p0.x * p1.z - v0.y * p2.x * p1.z -
- v2.x * p0.y * p1.z + v0.x * p2.y * p1.z - v1.y * p0.x * p2.z + v0.y * p1.x * p2.z +
- v1.x * p0.y * p2.z - v0.x * p1.y * p2.z;
- float sx = -p1.y * p0.z + p2.y * p0.z + p0.y * p1.z - p2.y * p1.z - p0.y * p2.z + p1.y * p2.z;
- float sy = p1.x * p0.z - p2.x * p0.z - p0.x * p1.z + p2.x * p1.z + p0.x * p2.z - p1.x * p2.z;
- float sz = -p1.x * p0.y + p2.x * p0.y + p0.x * p1.y - p2.x * p1.y - p0.x * p2.y + p1.x * p2.y;
- float sw = p2.x * p1.y * p0.z - p1.x * p2.y * p0.z - p2.x * p0.y * p1.z +
- p0.x * p2.y * p1.z + p1.x * p0.y * p2.z - p0.x * p1.y * p2.z;
- faceData.transform[0][0] = qx;
- faceData.transform[0][1] = qy;
- faceData.transform[0][2] = qz;
- faceData.transform[0][3] = qw;
- faceData.transform[1][0] = rx;
- faceData.transform[1][1] = ry;
- faceData.transform[1][2] = rz;
- faceData.transform[1][3] = rw;
- faceData.transform[2][0] = sx;
- faceData.transform[2][1] = sy;
- faceData.transform[2][2] = sz;
- faceData.transform[2][3] = sw;
- // Unused
- faceData.transform[3][0] = 0.0f;
- faceData.transform[3][1] = 0.0f;
- faceData.transform[3][2] = 0.0f;
- faceData.transform[3][3] = 0.0f;
- if (fabs(p) > 0.00001f)
- {
- faceData.transform = faceData.transform * (1.0f / p);
- faceData.quadratic = false;
- }
- else // Quadratic
- {
- faceData.quadratic = true;
- }
- faces.push_back(faceData);
- }
- }
- else
- {
- for (UINT32 i = 0; i < (UINT32)volume.outerFaces.size(); ++i)
- {
- const TetrahedronFace& face = volume.outerFaces[i];
- TetrahedronFaceData faceData;
- for (UINT32 j = 0; j < 3; j++)
- {
- faceData.innerVertices[j] = face.vertices[j];
- faceData.outerVertices[j] = -1;
- faceData.normals[j] = Vector3::ZERO;
- }
- faceData.tetrahedron = face.tetrahedron;
- faceData.transform = Matrix4::IDENTITY;
- faceData.quadratic = false;
- faces.push_back(faceData);
- }
- }
- // Generate matrices
- UINT32 numOutputTets = (UINT32)volume.tetrahedra.size();
- tetrahedra.reserve(numOutputTets);
- //// For inner tetrahedrons
- for(UINT32 i = 0; i < (UINT32)numOutputTets; ++i)
- {
- TetrahedronData entry;
- entry.volume = volume.tetrahedra[i];
- // Generate a matrix that can be used for calculating barycentric coordinates
- // To determine a point within a tetrahedron, using barycentric coordinates, we use:
- // P = (P1 - P4) * a + (P2 - P4) * b + (P3 - P4) * c + P4
- //
- // Where P1, P2, P3, P4 are the corners of the tetrahedron.
- //
- // Expanded for each coordinate this is:
- // x = (x1 - x4) * a + (x2 - x4) * b + (x3 - x4) * c + x4
- // y = (y1 - y4) * a + (y2 - y4) * b + (y3 - y4) * c + y4
- // z = (z1 - z4) * a + (z2 - z4) * b + (z3 - z4) * c + z4
- //
- // In matrix form this is:
- // a
- // P = [P1 - P4, P2 - P4, P3 - P4, P4] [b]
- // c
- // 1
- //
- // Solved for barycentric coordinates:
- // a
- // [b] = Minv * P
- // c
- // 1
- //
- // Where Minv is the inverse of the matrix above.
- const Vector3& P1 = positions[volume.tetrahedra[i].vertices[0]];
- const Vector3& P2 = positions[volume.tetrahedra[i].vertices[1]];
- const Vector3& P3 = positions[volume.tetrahedra[i].vertices[2]];
- const Vector3& P4 = positions[volume.tetrahedra[i].vertices[3]];
- Vector3 E1 = P1 - P4;
- Vector3 E2 = P2 - P4;
- Vector3 E3 = P3 - P4;
- Matrix4 mat;
- mat.setColumn(0, Vector4(E1, 0.0f));
- mat.setColumn(1, Vector4(E2, 0.0f));
- mat.setColumn(2, Vector4(E3, 0.0f));
- mat.setColumn(3, Vector4(P4, 1.0f));
- entry.transform = mat.inverse();
- tetrahedra.push_back(entry);
- }
- }
- bs_frame_clear();
- }
- }}
|