Main.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. #include <windows.h>
  2. #include "BsApplication.h"
  3. #include "BsImporter.h"
  4. #include "BsGpuProgramImportOptions.h"
  5. #include "BsTextureImportOptions.h"
  6. #include "BsMaterial.h"
  7. #include "BsShader.h"
  8. #include "BsTechnique.h"
  9. #include "BsPass.h"
  10. #include "BsCoreThreadAccessor.h"
  11. #include "BsApplication.h"
  12. #include "BsVirtualInput.h"
  13. #include "BsCamera.h"
  14. #include "BsRenderable.h"
  15. #include "BsGUIWidget.h"
  16. #include "BsGUIArea.h"
  17. #include "BsGUILayoutX.h"
  18. #include "BsGUILayoutY.h"
  19. #include "BsGUISpace.h"
  20. #include "BsGUILabel.h"
  21. #include "BsGUIButton.h"
  22. #include "BsGUIListBox.h"
  23. #include "BsBuiltinResources.h"
  24. #include "BsRTTIType.h"
  25. #include "BsHString.h"
  26. #include "BsRenderWindow.h"
  27. #include "BsSceneObject.h"
  28. #include "BsCoreThread.h"
  29. #include "BsProfilerOverlay.h"
  30. #include "BsRenderer.h"
  31. #include "BsResources.h"
  32. #include "CameraFlyer.h"
  33. namespace BansheeEngine
  34. {
  35. UINT32 windowResWidth = 1280;
  36. UINT32 windowResHeight = 720;
  37. /**
  38. * Imports all of our assets and prepares GameObject that handle the example logic.
  39. */
  40. void setUpExample();
  41. /**
  42. * Releases all resources and prepares the example fur shutdown.
  43. */
  44. void shutDownExample();
  45. /**
  46. * Toggles the primary window between full-screen and windowed mode.
  47. */
  48. void toggleFullscreen();
  49. /**
  50. * Called whenever the main render window is resized.
  51. */
  52. void renderWindowResized();
  53. /**
  54. * Called when the selected video mode changes in the video mode list box.
  55. */
  56. void videoModeChanged(UINT32 idx);
  57. /**
  58. * Triggered whenever a virtual button is released.
  59. */
  60. void buttonUp(const VirtualButton& button, UINT32 deviceIdx);
  61. }
  62. using namespace BansheeEngine;
  63. /**
  64. * Main entry point into the application.
  65. */
  66. int CALLBACK WinMain(
  67. _In_ HINSTANCE hInstance,
  68. _In_ HINSTANCE hPrevInstance,
  69. _In_ LPSTR lpCmdLine,
  70. _In_ int nCmdShow
  71. )
  72. {
  73. // Descriptor used for initializing the primary application window.
  74. RENDER_WINDOW_DESC renderWindowDesc;
  75. renderWindowDesc.videoMode = VideoMode(windowResWidth, windowResHeight);
  76. renderWindowDesc.title = "Banshee Example App";
  77. renderWindowDesc.fullscreen = false;
  78. // Initializes the application with primary window defined as above and DirectX 11 render system.
  79. // You may use other render systems than DirectX 11, however this example for simplicity only uses DirectX 11.
  80. // If you wanted other render systems you would need to create separate shaders for them and import them
  81. // along with (or replace) the DX11 ones.
  82. Application::startUp(renderWindowDesc, RenderSystemPlugin::DX11);
  83. // Imports all of ours assets and prepares GameObject that handle the example logic.
  84. setUpExample();
  85. // Runs the main loop that does most of the work. This method will exit when user closes the main
  86. // window or exits in some other way.
  87. Application::instance().runMainLoop();
  88. // Perform cleanup
  89. shutDownExample();
  90. Application::shutDown();
  91. return 0;
  92. }
  93. namespace BansheeEngine
  94. {
  95. Path exampleModelPath = "..\\..\\..\\..\\Data\\Examples\\Pyromancer.fbx";
  96. Path exampleTexturePath = "..\\..\\..\\..\\Data\\Examples\\Pyromancer.psd";
  97. Path exampleFragmentShaderPath = "..\\..\\..\\..\\Data\\Examples\\example_fs.gpuprog";
  98. Path exampleVertexShaderPath = "..\\..\\..\\..\\Data\\Examples\\example_vs.gpuprog";
  99. GUIButton* toggleFullscreenButton = nullptr;
  100. bool fullscreen = false;
  101. const VideoMode* selectedVideoMode = nullptr;
  102. Vector<const VideoMode*> videoModes;
  103. HMesh exampleModel;
  104. HTexture exampleTexture;
  105. HGpuProgram exampleFragmentGPUProg;
  106. HGpuProgram exampleVertexGPUProg;
  107. HCamera sceneCamera;
  108. HProfilerOverlay profilerOverlay;
  109. VirtualButton toggleCPUProfilerBtn;
  110. VirtualButton toggleGPUProfilerBtn;
  111. bool cpuProfilerActive = false;
  112. bool gpuProfilerActive = false;
  113. void setUpExample()
  114. {
  115. /************************************************************************/
  116. /* IMPORT ASSETS */
  117. /************************************************************************/
  118. // Import mesh, texture and shader from the disk. In a normal application you would want to save the imported assets
  119. // so next time the application is ran you can just load them directly. This can be done with Resources::save/load.
  120. // Import an FBX mesh.
  121. exampleModel = static_resource_cast<Mesh>(Importer::instance().import(exampleModelPath));
  122. // When importing you may specify optional import options that control how is the asset imported.
  123. ImportOptionsPtr textureImportOptions = Importer::instance().createImportOptions(exampleTexturePath);
  124. // rtti_is_of_type checks if the import options are of valid type, in case the provided path is pointing to a non-texture resource.
  125. // This is similar to dynamic_cast but uses Banshee internal RTTI system for type checking.
  126. if (rtti_is_of_type<TextureImportOptions>(textureImportOptions))
  127. {
  128. TextureImportOptions* importOptions = static_cast<TextureImportOptions*>(textureImportOptions.get());
  129. // We want maximum number of mipmaps to be generated
  130. importOptions->setGenerateMipmaps(true);
  131. }
  132. // Import texture with specified import options
  133. exampleTexture = static_resource_cast<Texture>(Importer::instance().import(exampleTexturePath, textureImportOptions));
  134. // Create import options for fragment GPU program
  135. ImportOptionsPtr gpuProgImportOptions = Importer::instance().createImportOptions(exampleFragmentShaderPath);
  136. if (rtti_is_of_type<GpuProgramImportOptions>(gpuProgImportOptions))
  137. {
  138. GpuProgramImportOptions* importOptions = static_cast<GpuProgramImportOptions*>(gpuProgImportOptions.get());
  139. // Name of the entry function in the GPU program
  140. importOptions->setEntryPoint("ps_main");
  141. // Language the GPU program is written in. Can only be hlsl for DX11
  142. importOptions->setLanguage("hlsl");
  143. // GPU program profile specifying what feature-set the shader code uses.
  144. importOptions->setProfile(GPP_PS_4_0);
  145. // Type of the shader.
  146. importOptions->setType(GPT_FRAGMENT_PROGRAM);
  147. }
  148. // Import fragment GPU program
  149. exampleFragmentGPUProg = static_resource_cast<GpuProgram>(Importer::instance().import(exampleFragmentShaderPath, gpuProgImportOptions));
  150. // Create import options for vertex GPU program. Similar as above.
  151. gpuProgImportOptions = Importer::instance().createImportOptions(exampleVertexShaderPath);
  152. if (rtti_is_of_type<GpuProgramImportOptions>(gpuProgImportOptions))
  153. {
  154. GpuProgramImportOptions* importOptions = static_cast<GpuProgramImportOptions*>(gpuProgImportOptions.get());
  155. importOptions->setEntryPoint("vs_main");
  156. importOptions->setLanguage("hlsl");
  157. importOptions->setProfile(GPP_VS_4_0);
  158. importOptions->setType(GPT_VERTEX_PROGRAM);
  159. }
  160. // Import vertex GPU program
  161. exampleVertexGPUProg = static_resource_cast<GpuProgram>(Importer::instance().import(exampleVertexShaderPath, gpuProgImportOptions));
  162. /************************************************************************/
  163. /* CREATE SHADER */
  164. /************************************************************************/
  165. // Create a shader that references our vertex and fragment GPU programs, and set
  166. // up shader input parameters.
  167. ShaderPtr exampleShader = Shader::create("ExampleShader");
  168. // Set up shader parameters and renderer semantics.
  169. // Renderer semantics allow our renderer to automatically populate certain shader parameters (e.g. a world view projection matrix).
  170. // These semantics are purely optional and depend on the renderer used. Certain renderers expect certain semantics to be set up
  171. // otherwise they will not render the objects. You always have the option to populate all the parameters manually, but in this example
  172. // we go with the semantics route as it allows for a "set up and forget" approach.
  173. // Add a world view projection matrix parameter, which will be populated by the renderer.
  174. // We map our shader parameter name to the actual GPU program variable, both being "matWorldViewProj" in this case.
  175. exampleShader->addParameter("matWorldViewProj", "matWorldViewProj", GPDT_MATRIX_4X4, RPS_WorldViewProjTfrm);
  176. // Add a sampler and a texture semantic that we will populate manually.
  177. exampleShader->addParameter("samp", "samp", GPOT_SAMPLER2D);
  178. exampleShader->addParameter("tex", "tex", GPOT_TEXTURE2D);
  179. // Our GPU programs use parameter blocks (constant buffers in DX11 lingo). Here we notify the renderer
  180. // that this particular parameter block contains object-specific data (like the world view projection parameter
  181. // we defined above).
  182. exampleShader->setParamBlockAttribs("PerObject", true, GPBU_DYNAMIC, RBS_PerObject);
  183. /************************************************************************/
  184. /* CREATE MATERIAL */
  185. /************************************************************************/
  186. // Create a shader technique. Shader can have many different techniques and the renderer will automatically
  187. // use the most appropriate technique depending on the active renderer and render system. e.g. you can have different
  188. // techniques using HLSL9, HLSL11 and GLSL GPU programs for DirectX 9, DirectX 11 and OpenGL render systems respectively.
  189. TechniquePtr technique = exampleShader->addTechnique(RenderSystemDX11, RendererDefault);
  190. // Add a new pass to the technique. Each technique can have multiple passes that allow you to render the same
  191. // object multiple times using different GPU programs.
  192. PassPtr pass = technique->addPass();
  193. pass->setVertexProgram(exampleVertexGPUProg);
  194. pass->setFragmentProgram(exampleFragmentGPUProg);
  195. // And finally create a material with the newly created shader
  196. HMaterial exampleMaterial = Material::create(exampleShader);
  197. // And set the texture to be used by the "tex" shader parameter. We leave the "samp"
  198. // parameter at its defaults.
  199. exampleMaterial->setTexture("tex", exampleTexture);
  200. /************************************************************************/
  201. /* SCENE OBJECT */
  202. /************************************************************************/
  203. // Now we create a scene object that has a position, orientation, scale and optionally
  204. // components to govern its logic. In this particular case we are creating a SceneObject
  205. // with a Renderable component which will render a mesh at the position of the scene object
  206. // with the provided material.
  207. // Create new scene object at (0, 0, 0)
  208. HSceneObject pyromancerSO = SceneObject::create("Pyromancer");
  209. // Attach the Renderable component and hook up the mesh we imported earlier,
  210. // and the material we created in the previous section.
  211. HRenderable renderable = pyromancerSO->addComponent<Renderable>();
  212. renderable->setMesh(exampleModel);
  213. renderable->setMaterial(exampleMaterial);
  214. /************************************************************************/
  215. /* CAMERA */
  216. /************************************************************************/
  217. // In order something to render on screen we need at least one camera.
  218. // Like before, we create a new scene object at (0, 0, 0).
  219. HSceneObject sceneCameraSO = SceneObject::create("SceneCamera");
  220. // Get the primary render window we need for creating the camera. Additionally
  221. // hook up a callback so we are notified when user resizes the window.
  222. RenderWindowPtr window = gApplication().getPrimaryWindow();
  223. window->onResized.connect(&renderWindowResized);
  224. // Add a Camera component that will output whatever it sees into that window
  225. // (You could also use a render texture or another window you created).
  226. sceneCamera = sceneCameraSO->addComponent<Camera>(window);
  227. // Set up camera component properties
  228. // Priority determines in what order are cameras rendered in case multiple cameras render to the same render target.
  229. // We raise the priority slightly because later in code we have defined a GUI camera that we want to render second.
  230. sceneCamera->setPriority(1);
  231. // Set closest distance that is visible. Anything below that is clipped.
  232. sceneCamera->setNearClipDistance(5);
  233. // Set aspect ratio depending on the current resolution
  234. sceneCamera->setAspectRatio(windowResWidth / (float)windowResHeight);
  235. // Add a CameraFlyer component that allows us to move the camera. See CameraFlyer for more information.
  236. sceneCameraSO->addComponent<CameraFlyer>();
  237. // Position and orient the camera scene object
  238. sceneCameraSO->setPosition(Vector3(40.0f, 30.0f, 230.0f));
  239. sceneCameraSO->lookAt(Vector3(0, 0, 0));
  240. /************************************************************************/
  241. /* INPUT */
  242. /************************************************************************/
  243. // Register input configuration
  244. // Banshee allows you to use VirtualInput system which will map input device buttons
  245. // and axes to arbitrary names, which allows you to change input buttons without affecting
  246. // the code that uses it, since the code is only aware of the virtual names.
  247. // If you want more direct input, see Input class.
  248. auto inputConfig = VirtualInput::instance().getConfiguration();
  249. // Camera controls for buttons (digital 0-1 input, e.g. keyboard or gamepad button)
  250. inputConfig->registerButton("Forward", BC_W);
  251. inputConfig->registerButton("Back", BC_S);
  252. inputConfig->registerButton("Left", BC_A);
  253. inputConfig->registerButton("Right", BC_D);
  254. inputConfig->registerButton("Forward", BC_UP);
  255. inputConfig->registerButton("Back", BC_BACK);
  256. inputConfig->registerButton("Left", BC_LEFT);
  257. inputConfig->registerButton("Right", BC_RIGHT);
  258. inputConfig->registerButton("FastMove", BC_LSHIFT);
  259. inputConfig->registerButton("RotateCam", BC_MOUSE_RIGHT);
  260. // Camera controls for axes (analog input, e.g. mouse or gamepad thumbstick)
  261. // These return values in [-1.0, 1.0] range.
  262. inputConfig->registerAxis("Horizontal", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseX));
  263. inputConfig->registerAxis("Vertical", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseY));
  264. // Controls that toggle the profiler overlays
  265. inputConfig->registerButton("CPUProfilerOverlay", BC_F1);
  266. inputConfig->registerButton("GPUProfilerOverlay", BC_F2);
  267. // Cache the profiler overlay buttons so when a button is pressed we can quickly
  268. // use these to determine its the one we want
  269. toggleCPUProfilerBtn = VirtualButton("CPUProfilerOverlay");
  270. toggleGPUProfilerBtn = VirtualButton("GPUProfilerOverlay");
  271. // Hook up a callback that gets triggered whenever a virtual button is released
  272. VirtualInput::instance().onButtonUp.connect(&buttonUp);
  273. /************************************************************************/
  274. /* GUI */
  275. /************************************************************************/
  276. // Create a scene object that will contain GUI components
  277. HSceneObject guiSO = SceneObject::create("Example");
  278. // First we want another camera that is responsible for rendering GUI
  279. HCamera guiCamera = guiSO->addComponent<Camera>(window);
  280. // Set up GUI camera properties.
  281. // We don't care about aspect ratio for GUI camera.
  282. guiCamera->setAspectRatio(1.0f);
  283. // This camera should ignore any Renderable objects in the scene
  284. guiCamera->setIgnoreSceneRenderables(true);
  285. // Don't clear this camera as that would clear anything the main camera has rendered.
  286. guiCamera->getViewport()->setRequiresClear(false, false, false);
  287. // Add a GUIWidget, the top-level GUI component, parent to all GUI elements. GUI widgets
  288. // require you to specify a viewport that they will output rendered GUI elements to.
  289. HGUIWidget gui = guiSO->addComponent<GUIWidget>(guiCamera->getViewport().get());
  290. // Depth allows you to control how is a GUI widget rendered in relation to other widgets
  291. // Lower depth means the widget will be rendered in front of those with higher. In this case we just
  292. // make the depth mid-range as there are no other widgets.
  293. gui->setDepth(128);
  294. // GUI skin defines how are all child elements of the GUI widget renderered. It contains all their styles
  295. // and default layout properties. We use the default skin that comes built into Banshee.
  296. gui->setSkin(BuiltinResources::instance().getGUISkin());
  297. // Create a GUI area that is used for displaying messages about toggling profiler overlays.
  298. // This area will stretch the entire surface of its parent widget, even if the widget is resized.
  299. GUIArea* topArea = GUIArea::createStretchedXY(*gui, 0, 0, 0, 0);
  300. // Add a vertical layout that will automatically position any child elements top to bottom.
  301. GUILayout& topLayout = topArea->getLayout().addLayoutY();
  302. // Add a couple of labels to the layout with the needed messages. Labels expect a HString object that
  303. // maps into a string table and allows for easily localization.
  304. topLayout.addElement(GUILabel::create(HString(L"Press F1 to toggle CPU profiler overlay")));
  305. topLayout.addElement(GUILabel::create(HString(L"Press F2 to toggle GPU profiler overlay")));
  306. // Add a flexible space that fills up any remaining area in the layout, making the two labels above be aligned
  307. // to the top of the GUI widget (and the screen).
  308. topLayout.addFlexibleSpace();
  309. // Create a GUI area that is used for displaying resolution and fullscreen options.
  310. GUIArea* rightArea = GUIArea::createStretchedXY(*gui, 0, 0, 0, 0);
  311. // We want all the GUI elements be right aligned, so we add a flexible space first.
  312. rightArea->getLayout().addFlexibleSpace();
  313. // And we want the elements to be vertically placed, top to bottom
  314. GUILayout& rightLayout = rightArea->getLayout().addLayoutY();
  315. // Add an empty space of 50 pixels
  316. rightLayout.addSpace(50);
  317. // Add a button that will trigger a callback when clicked
  318. toggleFullscreenButton = GUIButton::create(HString(L"Toggle fullscreen"));
  319. toggleFullscreenButton->onClick.connect(&toggleFullscreen);
  320. rightLayout.addElement(toggleFullscreenButton);
  321. // Add a profiler overlay object that is resposible for displaying CPU and GPU profiling GUI
  322. profilerOverlay = guiSO->addComponent<ProfilerOverlay>(guiCamera->getViewport());
  323. // Set up video mode list box
  324. // First get a list of output devices
  325. const VideoModeInfo& videoModeInfo = RenderSystem::instance().getVideoModeInfo();
  326. // Get video mode info for the primary monitor
  327. const VideoOutputInfo& primaryMonitorInfo = videoModeInfo.getOutputInfo(0);
  328. // Make the current desktop mode the default video mode
  329. selectedVideoMode = &primaryMonitorInfo.getDesktopVideoMode();
  330. // Create list box elements for each available video mode
  331. UINT32 numVideoModes = primaryMonitorInfo.getNumVideoModes();
  332. Vector<HString> videoModeLabels(numVideoModes);
  333. UINT32 selectedVideoModeIdx = 0;
  334. for (UINT32 i = 0; i < numVideoModes; i++)
  335. {
  336. const VideoMode& curVideoMode = primaryMonitorInfo.getVideoMode(i);
  337. HString videoModeLabel(L"{0} x {1} at {2}Hz");
  338. videoModeLabel.setParameter(0, toWString(curVideoMode.getWidth()));
  339. videoModeLabel.setParameter(1, toWString(curVideoMode.getHeight()));
  340. videoModeLabel.setParameter(2, toWString(Math::roundToInt(curVideoMode.getRefreshRate())));
  341. videoModeLabels[i] = videoModeLabel;
  342. videoModes.push_back(&curVideoMode);
  343. if (curVideoMode == *selectedVideoMode)
  344. selectedVideoModeIdx = i;
  345. }
  346. // Create the list box
  347. GUIListBox* videoModeListBox = GUIListBox::create(videoModeLabels);
  348. rightLayout.addElement(videoModeListBox);
  349. // Select the default (desktop) video mode
  350. videoModeListBox->selectElement(selectedVideoModeIdx);
  351. // Set up a callback to be notified when video mode changes
  352. videoModeListBox->onSelectionChanged.connect(&videoModeChanged);
  353. }
  354. void shutDownExample()
  355. {
  356. // We require all handles to be released before shutdown.
  357. gResources().unload(exampleModel);
  358. gResources().unload(exampleTexture);
  359. gResources().unload(exampleFragmentGPUProg);
  360. gResources().unload(exampleVertexGPUProg);
  361. exampleModel = nullptr;
  362. exampleTexture = nullptr;
  363. exampleFragmentGPUProg = nullptr;
  364. exampleVertexGPUProg = nullptr;
  365. sceneCamera = nullptr;
  366. profilerOverlay = nullptr;
  367. }
  368. void toggleFullscreen()
  369. {
  370. RenderWindowPtr window = gApplication().getPrimaryWindow();
  371. // In order to toggle between full-screen and windowed mode we need to use a CoreAccessor.
  372. // Banshee is a multi-threaded engine and when you need to communicate between simulation and
  373. // core thread you will use a CoreAccessor. Calling a core accessor method will essentially
  374. // queue the method to be executed later. Since RenderWindow is a core object you need to use
  375. // CoreAccessor to modify and access it from simulation thread, except where noted otherwise.
  376. // Classes where it is not clear if they are to be used on the core or simulation thread have
  377. // it noted in their documentation. e.g. RenderWindow::setWindowed method is marked as "Core only".
  378. // Additional asserts are normally in place for debug builds which make it harder for you to accidentally
  379. // call something from the wrong thread.
  380. if (fullscreen)
  381. {
  382. gCoreAccessor().setWindowed(window, windowResWidth, windowResHeight);
  383. }
  384. else
  385. {
  386. gCoreAccessor().setFullscreen(window, *selectedVideoMode);
  387. }
  388. fullscreen = !fullscreen;
  389. }
  390. void renderWindowResized()
  391. {
  392. RenderWindowPtr window = gApplication().getPrimaryWindow();
  393. if (!fullscreen)
  394. {
  395. windowResWidth = window->getWidth();
  396. windowResHeight = window->getHeight();
  397. }
  398. sceneCamera->setAspectRatio(window->getWidth() / (float)window->getHeight());
  399. }
  400. void videoModeChanged(UINT32 idx)
  401. {
  402. selectedVideoMode = videoModes[idx];
  403. if (fullscreen)
  404. {
  405. RenderWindowPtr window = gApplication().getPrimaryWindow();
  406. gCoreAccessor().setFullscreen(window, *selectedVideoMode);
  407. }
  408. }
  409. void buttonUp(const VirtualButton& button, UINT32 deviceIdx)
  410. {
  411. // Check if the pressed button is one of the either buttons we defined
  412. // in "setUpExample", and toggle profiler overlays accordingly.
  413. // Device index is ignored for now, as it is assumed the user is using a single keyboard,
  414. // but if you wanted support for multiple gamepads you would check deviceIdx.
  415. if (button == toggleCPUProfilerBtn)
  416. {
  417. if (cpuProfilerActive)
  418. {
  419. profilerOverlay->hide();
  420. cpuProfilerActive = false;
  421. }
  422. else
  423. {
  424. profilerOverlay->show(ProfilerOverlayType::CPUSamples);
  425. cpuProfilerActive = true;
  426. gpuProfilerActive = false;
  427. }
  428. }
  429. else if (button == toggleGPUProfilerBtn)
  430. {
  431. if (gpuProfilerActive)
  432. {
  433. profilerOverlay->hide();
  434. gpuProfilerActive = false;
  435. }
  436. else
  437. {
  438. profilerOverlay->show(ProfilerOverlayType::GPUSamples);
  439. gpuProfilerActive = true;
  440. cpuProfilerActive = false;
  441. }
  442. }
  443. }
  444. }