CmBinarySerializer.cpp 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include "CmBinarySerializer.h"
  2. #include "CmException.h"
  3. #include "CmIReflectable.h"
  4. #include "CmRTTIType.h"
  5. #include "CmRTTIField.h"
  6. #include "CmRTTIPlainField.h"
  7. #include "CmRTTIReflectableField.h"
  8. #include "CmRTTIReflectablePtrField.h"
  9. #include "CmRTTIManagedDataBlockField.h"
  10. #include <unordered_set>
  11. /**
  12. * @brief A macro that represents a block of code that gets used a lot inside
  13. * encodeInternal. It checks if the buffer has enough space, and if it does
  14. * it copies the data from the specified location and increments the needed
  15. * pointers and counters. If there is not enough space the buffer is flushed
  16. * (hopefully to make some space). If there is still not enough space the entire
  17. * encoding process ends.
  18. *
  19. * @param dataPtr Pointer to data which to copy.
  20. * @param size Size of the data to copy
  21. */
  22. #define COPY_TO_BUFFER(dataIter, size) \
  23. if((*bytesWritten + size##) > bufferLength) \
  24. { \
  25. mTotalBytesWritten += *bytesWritten; \
  26. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength); \
  27. if(buffer == nullptr || bufferLength < size##) return nullptr; \
  28. *bytesWritten = 0; \
  29. } \
  30. \
  31. memcpy(buffer, dataIter##, size##); \
  32. buffer += size##; \
  33. *bytesWritten += size##;
  34. namespace CamelotEngine
  35. {
  36. BinarySerializer::BinarySerializer()
  37. :mLastUsedObjectId(1)
  38. {
  39. }
  40. void BinarySerializer::encode(IReflectable* object, UINT8* buffer, UINT32 bufferLength, int* bytesWritten, boost::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  41. {
  42. mObjectsToEncode.clear();
  43. mObjectAddrToId.clear();
  44. mLastUsedObjectId = 1;
  45. *bytesWritten = 0;
  46. mTotalBytesWritten = 0;
  47. UINT8* bufferStart = buffer;
  48. UINT32 objectId = findOrCreatePersistentId(object);
  49. // Encode primary object and its value types
  50. buffer = encodeInternal(object, objectId, buffer, bufferLength, bytesWritten, flushBufferCallback);
  51. if(buffer == nullptr)
  52. {
  53. CM_EXCEPT(InternalErrorException,
  54. "Destination buffer is null or not large enough.");
  55. }
  56. // Encode pointed to objects and their value types
  57. std::unordered_set<UINT32> serializedObjects;
  58. while(true)
  59. {
  60. auto iter = mObjectsToEncode.begin();
  61. bool foundObjectToProcess = false;
  62. for(iter; iter != mObjectsToEncode.end(); ++iter)
  63. {
  64. auto foundExisting = serializedObjects.find(iter->objectId);
  65. if(foundExisting != serializedObjects.end())
  66. continue; // Already processed
  67. std::shared_ptr<IReflectable> curObject = iter->object;
  68. UINT32 curObjectid = iter->objectId;
  69. serializedObjects.insert(curObjectid);
  70. mObjectsToEncode.erase(iter);
  71. buffer = encodeInternal(curObject.get(), curObjectid, buffer, bufferLength, bytesWritten, flushBufferCallback);
  72. if(buffer == nullptr)
  73. {
  74. CM_EXCEPT(InternalErrorException,
  75. "Destination buffer is null or not large enough.");
  76. }
  77. foundObjectToProcess = true;
  78. break; // Need to start over as mObjectsToSerialize was possibly modified
  79. }
  80. if(!foundObjectToProcess) // We're done
  81. break;
  82. }
  83. // Final flush
  84. if(*bytesWritten > 0)
  85. {
  86. mTotalBytesWritten += *bytesWritten;
  87. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  88. }
  89. *bytesWritten = mTotalBytesWritten;
  90. mObjectsToEncode.clear();
  91. mObjectAddrToId.clear();
  92. }
  93. std::shared_ptr<IReflectable> BinarySerializer::decode(UINT8* data, UINT32 dataLength)
  94. {
  95. mObjectMap.clear();
  96. mDecodedObjects.clear();
  97. // Create empty instances of all ptr objects
  98. UINT32 bytesRead = 0;
  99. UINT8* dataIter = nullptr;
  100. std::shared_ptr<IReflectable> rootObject = nullptr;
  101. do
  102. {
  103. dataIter = data + bytesRead;
  104. if(sizeof(UINT32) > dataLength)
  105. {
  106. CM_EXCEPT(InternalErrorException,
  107. "Error decoding data.");
  108. }
  109. ObjectMetaData objectMetaData;
  110. objectMetaData.objectMeta = 0;
  111. objectMetaData.typeId = 0;
  112. memcpy(&objectMetaData, dataIter, sizeof(ObjectMetaData));
  113. UINT32 objectId = 0;
  114. UINT32 objectTypeId = 0;
  115. bool isBaseClass = false;
  116. decodeObjectMetaData(objectMetaData, objectId, objectTypeId, isBaseClass);
  117. if(isBaseClass)
  118. {
  119. CM_EXCEPT(InternalErrorException, "Encountered a base-class object while looking for a new object. " \
  120. "Base class objects are only supposed to be parts of a larger object.");
  121. }
  122. std::shared_ptr<IReflectable> object = IReflectable::createInstanceFromTypeId(objectTypeId);
  123. mObjectMap.insert(std::make_pair(objectId, object));
  124. mObjectsToDecode.push_back(object);
  125. if(rootObject == nullptr)
  126. rootObject = object;
  127. } while (decodeInternal(nullptr, dataIter, dataLength, bytesRead));
  128. bytesRead = 0;
  129. for(auto objIter = mObjectsToDecode.begin(); objIter != mObjectsToDecode.end(); ++objIter)
  130. {
  131. dataIter = data + bytesRead;
  132. decodeInternal(*objIter, dataIter, dataLength, bytesRead);
  133. }
  134. // Finish serialization for all objects
  135. // TODO Low priority - If we're decoding a very large class hierarchy, finishing serialization
  136. // only at the end of the entire decode process could cause issues. It would be better if I can do it
  137. // every time I know a certain object has been fully decoded. (This would probably involve resolving
  138. // pointers at an earlier stage as well)
  139. for(auto iter = mDecodedObjects.rbegin(); iter != mDecodedObjects.rend(); ++iter)
  140. {
  141. std::shared_ptr<IReflectable> resolvedObject = *iter;
  142. if(resolvedObject != nullptr)
  143. {
  144. RTTITypeBase* si = resolvedObject->getRTTI();
  145. while(si != nullptr)
  146. {
  147. si->onDeserializationEnded(resolvedObject.get());
  148. si = si->getBaseClass();
  149. }
  150. }
  151. }
  152. mObjectMap.clear();
  153. mDecodedObjects.clear();
  154. return rootObject;
  155. }
  156. UINT8* BinarySerializer::encodeInternal(IReflectable* object, UINT32 objectId, UINT8* buffer, UINT32& bufferLength,
  157. int* bytesWritten, boost::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  158. {
  159. static const UINT32 META_SIZE = 4; // Meta field size
  160. static const UINT32 NUM_ELEM_FIELD_SIZE = 4; // Size of the field storing number of array elements
  161. static const UINT32 COMPLEX_TYPE_SIZE = 4; // Size of the field storing the size of a child complex type
  162. RTTITypeBase* si = object->getRTTI();
  163. bool isBaseClass = false;
  164. // If an object has base classes, we need to iterate through all of them
  165. do
  166. {
  167. si->onSerializationStarted(object);
  168. // Encode object ID & type
  169. ObjectMetaData objectMetaData = encodeObjectMetaData(objectId, si->getRTTIId(), isBaseClass);
  170. COPY_TO_BUFFER(&objectMetaData, sizeof(ObjectMetaData))
  171. int numFields = si->getNumFields();
  172. for(int i = 0; i < numFields; i++)
  173. {
  174. RTTIField* curGenericField = si->getField(i);
  175. // Copy field ID & other meta-data like field size and type
  176. int metaData = encodeFieldMetaData(curGenericField->mUniqueId, curGenericField->getTypeSize(),
  177. curGenericField->mIsVectorType, curGenericField->mType, curGenericField->hasDynamicSize());
  178. COPY_TO_BUFFER(&metaData, META_SIZE)
  179. if(curGenericField->mIsVectorType)
  180. {
  181. UINT32 arrayNumElems = curGenericField->getArraySize(object);
  182. // Copy num vector elements
  183. COPY_TO_BUFFER(&arrayNumElems, NUM_ELEM_FIELD_SIZE)
  184. switch(curGenericField->mType)
  185. {
  186. case SerializableFT_ReflectablePtr:
  187. {
  188. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  189. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  190. {
  191. std::shared_ptr<IReflectable> childObject = curField->getArrayValue(object, arrIdx);
  192. UINT32 objId = registerObjectPtr(childObject);
  193. COPY_TO_BUFFER(&objId, sizeof(UINT32))
  194. }
  195. break;
  196. }
  197. case SerializableFT_Reflectable:
  198. {
  199. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  200. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  201. {
  202. IReflectable& childObject = curField->getArrayValue(object, arrIdx);
  203. buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, bytesWritten, flushBufferCallback);
  204. if(buffer == nullptr)
  205. {
  206. si->onSerializationEnded(object);
  207. return nullptr;
  208. }
  209. }
  210. break;
  211. }
  212. case SerializableFT_Plain:
  213. {
  214. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  215. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  216. {
  217. UINT32 typeSize = 0;
  218. if(curField->hasDynamicSize())
  219. typeSize = curField->getArrayElemDynamicSize(object, arrIdx);
  220. else
  221. typeSize = curField->getTypeSize();
  222. if((*bytesWritten + typeSize) > bufferLength)
  223. {
  224. mTotalBytesWritten += *bytesWritten;
  225. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  226. if(buffer == nullptr || bufferLength < typeSize)
  227. {
  228. return nullptr;
  229. si->onSerializationEnded(object);
  230. }
  231. *bytesWritten = 0;
  232. }
  233. curField->arrayElemToBuffer(object, arrIdx, buffer);
  234. buffer += typeSize;
  235. *bytesWritten += typeSize;
  236. }
  237. break;
  238. }
  239. default:
  240. CM_EXCEPT(InternalErrorException,
  241. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  242. ", Is array: " + toString(curGenericField->mIsVectorType));
  243. }
  244. }
  245. else
  246. {
  247. switch(curGenericField->mType)
  248. {
  249. case SerializableFT_ReflectablePtr:
  250. {
  251. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  252. std::shared_ptr<IReflectable> childObject = curField->getValue(object);
  253. UINT32 objId = registerObjectPtr(childObject);
  254. COPY_TO_BUFFER(&objId, sizeof(UINT32))
  255. break;
  256. }
  257. case SerializableFT_Reflectable:
  258. {
  259. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  260. IReflectable& childObject = curField->getValue(object);
  261. buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, bytesWritten, flushBufferCallback);
  262. if(buffer == nullptr)
  263. {
  264. si->onSerializationEnded(object);
  265. return nullptr;
  266. }
  267. break;
  268. }
  269. case SerializableFT_Plain:
  270. {
  271. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  272. UINT32 typeSize = 0;
  273. if(curField->hasDynamicSize())
  274. typeSize = curField->getDynamicSize(object);
  275. else
  276. typeSize = curField->getTypeSize();
  277. if((*bytesWritten + typeSize) > bufferLength)
  278. {
  279. mTotalBytesWritten += *bytesWritten;
  280. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  281. if(buffer == nullptr || bufferLength < typeSize)
  282. {
  283. si->onSerializationEnded(object);
  284. return nullptr;
  285. }
  286. *bytesWritten = 0;
  287. }
  288. curField->toBuffer(object, buffer);
  289. buffer += typeSize;
  290. *bytesWritten += typeSize;
  291. break;
  292. }
  293. case SerializableFT_DataBlock:
  294. {
  295. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  296. ManagedDataBlock value = curField->getValue(object);
  297. // Data block size
  298. UINT32 dataBlockSize = value.getSize();
  299. COPY_TO_BUFFER(&dataBlockSize, sizeof(UINT32))
  300. // Data block data
  301. UINT8* dataToStore = value.getData();
  302. UINT32 remainingSize = dataBlockSize;
  303. while(remainingSize > 0)
  304. {
  305. UINT32 remainingSpaceInBuffer = bufferLength - *bytesWritten;
  306. if(remainingSize <= remainingSpaceInBuffer)
  307. {
  308. COPY_TO_BUFFER(dataToStore, remainingSize);
  309. remainingSize = 0;
  310. }
  311. else
  312. {
  313. memcpy(buffer, dataToStore, remainingSpaceInBuffer);
  314. buffer += remainingSpaceInBuffer;
  315. *bytesWritten += remainingSpaceInBuffer;
  316. dataToStore += remainingSpaceInBuffer;
  317. remainingSize -= remainingSpaceInBuffer;
  318. mTotalBytesWritten += *bytesWritten;
  319. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  320. if(buffer == nullptr || bufferLength == 0)
  321. {
  322. si->onSerializationEnded(object);
  323. return nullptr;
  324. }
  325. *bytesWritten = 0;
  326. }
  327. }
  328. break;
  329. }
  330. default:
  331. CM_EXCEPT(InternalErrorException,
  332. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  333. ", Is array: " + toString(curGenericField->mIsVectorType));
  334. }
  335. }
  336. }
  337. si->onSerializationEnded(object);
  338. si = si->getBaseClass();
  339. isBaseClass = true;
  340. } while(si != nullptr); // Repeat until we reach the top of the inheritance hierarchy
  341. return buffer;
  342. }
  343. bool BinarySerializer::decodeInternal(std::shared_ptr<IReflectable> object, UINT8* data, UINT32 dataLength, UINT32& bytesRead)
  344. {
  345. static const int META_SIZE = 4; // Meta field size
  346. static const int NUM_ELEM_FIELD_SIZE = 4; // Size of the field storing number of array elements
  347. static const int COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  348. static const int DATA_BLOCK_TYPE_FIELD_SIZE = 4;
  349. RTTITypeBase* si = nullptr;
  350. if(object != nullptr)
  351. {
  352. si = object->getRTTI();
  353. if(si != nullptr)
  354. si->onDeserializationStarted(object.get());
  355. }
  356. if((bytesRead + sizeof(ObjectMetaData)) > dataLength)
  357. {
  358. CM_EXCEPT(InternalErrorException,
  359. "Error decoding data.");
  360. }
  361. ObjectMetaData objectMetaData;
  362. objectMetaData.objectMeta = 0;
  363. objectMetaData.typeId = 0;
  364. memcpy(&objectMetaData, data, sizeof(ObjectMetaData));
  365. data += sizeof(ObjectMetaData);
  366. bytesRead += sizeof(ObjectMetaData);
  367. UINT32 objectId = 0;
  368. UINT32 objectTypeId = 0;
  369. bool objectIsBaseClass = false;
  370. decodeObjectMetaData(objectMetaData, objectId, objectTypeId, objectIsBaseClass);
  371. if(object != nullptr && !objectIsBaseClass)
  372. mDecodedObjects.push_back(object);
  373. while(bytesRead < dataLength)
  374. {
  375. int metaData = -1;
  376. if((bytesRead + META_SIZE) > dataLength)
  377. {
  378. CM_EXCEPT(InternalErrorException,
  379. "Error decoding data.");
  380. }
  381. memcpy((void*)&metaData, data, META_SIZE);
  382. if(isObjectMetaData(metaData)) // We've reached a new object
  383. {
  384. if((bytesRead + sizeof(ObjectMetaData)) > dataLength)
  385. {
  386. CM_EXCEPT(InternalErrorException,
  387. "Error decoding data.");
  388. }
  389. ObjectMetaData objMetaData;
  390. objMetaData.objectMeta = 0;
  391. objMetaData.typeId = 0;
  392. memcpy(&objMetaData, data, sizeof(ObjectMetaData));
  393. UINT32 objId = 0;
  394. UINT32 objTypeId = 0;
  395. bool objIsBaseClass = false;
  396. decodeObjectMetaData(objMetaData, objId, objTypeId, objIsBaseClass);
  397. // If it's a base class, get base class RTTI and handle that
  398. if(objIsBaseClass)
  399. {
  400. if(si != nullptr)
  401. si = si->getBaseClass();
  402. // Saved and current base classes don't match, so just skip over all that data
  403. if(si == nullptr || si->getRTTIId() != objTypeId)
  404. {
  405. si = nullptr;
  406. }
  407. if(si != nullptr)
  408. {
  409. si->onDeserializationStarted(object.get());
  410. }
  411. data += sizeof(ObjectMetaData);
  412. bytesRead += sizeof(ObjectMetaData);
  413. continue;
  414. }
  415. else
  416. {
  417. if(objId != 0)
  418. return true; // New object, break out of this method and begin processing it from scratch
  419. // Objects with ID == 0 represent complex types serialized by value, but they should only get serialized
  420. // if we encounter a field with one, not by just iterating through the file.
  421. CM_EXCEPT(InternalErrorException, "Object with ID 0 encountered. Cannot proceed with serialization.");
  422. }
  423. }
  424. data += META_SIZE;
  425. bytesRead += META_SIZE;
  426. bool isArray;
  427. SerializableFieldType fieldType;
  428. UINT16 fieldId;
  429. UINT8 fieldSize;
  430. bool hasDynamicSize;
  431. decodeFieldMetaData(metaData, fieldId, fieldSize, isArray, fieldType, hasDynamicSize);
  432. RTTIField* curGenericField = nullptr;
  433. if(si != nullptr)
  434. curGenericField = si->findField(fieldId);
  435. if(curGenericField != nullptr)
  436. {
  437. if(curGenericField->getTypeSize() != fieldSize)
  438. {
  439. CM_EXCEPT(InternalErrorException,
  440. "Data type mismatch. Type size stored in file and actual type size don't match. ("
  441. + toString(curGenericField->getTypeSize()) + " vs. " + toString(fieldSize) + ")");
  442. }
  443. if(curGenericField->mIsVectorType != isArray)
  444. {
  445. CM_EXCEPT(InternalErrorException,
  446. "Data type mismatch. One is array, other is a single type.");
  447. }
  448. if(curGenericField->mType != fieldType)
  449. {
  450. CM_EXCEPT(InternalErrorException,
  451. "Data type mismatch. Field types don't match. " + toString(UINT32(curGenericField->mType)) + " vs. " + toString(UINT32(fieldType)));
  452. }
  453. }
  454. int arrayNumElems = 1;
  455. if(isArray)
  456. {
  457. if((bytesRead + NUM_ELEM_FIELD_SIZE) > dataLength)
  458. {
  459. CM_EXCEPT(InternalErrorException,
  460. "Error decoding data.");
  461. }
  462. memcpy((void*)&arrayNumElems, data, NUM_ELEM_FIELD_SIZE);
  463. data += NUM_ELEM_FIELD_SIZE;
  464. bytesRead += NUM_ELEM_FIELD_SIZE;
  465. if(curGenericField != nullptr)
  466. curGenericField->setArraySize(object.get(), arrayNumElems);
  467. switch(fieldType)
  468. {
  469. case SerializableFT_ReflectablePtr:
  470. {
  471. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  472. for(int i = 0; i < arrayNumElems; i++)
  473. {
  474. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  475. {
  476. CM_EXCEPT(InternalErrorException,
  477. "Error decoding data.");
  478. }
  479. int objectId = 0;
  480. memcpy(&objectId, data, COMPLEX_TYPE_FIELD_SIZE);
  481. data += COMPLEX_TYPE_FIELD_SIZE;
  482. bytesRead += COMPLEX_TYPE_FIELD_SIZE;
  483. if(curField != nullptr)
  484. {
  485. std::shared_ptr<IReflectable> resolvedObject = nullptr;
  486. auto findIter = mObjectMap.find(objectId);
  487. if(findIter != mObjectMap.end())
  488. resolvedObject = findIter->second;
  489. curField->setArrayValue(object.get(), i, resolvedObject);
  490. }
  491. }
  492. break;
  493. }
  494. case SerializableFT_Reflectable:
  495. {
  496. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  497. for(int i = 0; i < arrayNumElems; i++)
  498. {
  499. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  500. {
  501. CM_EXCEPT(InternalErrorException,
  502. "Error decoding data.");
  503. }
  504. int complexTypeSize = 0;
  505. if(curField != nullptr)
  506. {
  507. std::shared_ptr<IReflectable> complexType = complexTypeFromBuffer(curField, data, &complexTypeSize);
  508. curField->setArrayValue(object.get(), i, *complexType);
  509. }
  510. else
  511. {
  512. memcpy(&complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  513. complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  514. }
  515. data += complexTypeSize;
  516. bytesRead += complexTypeSize;
  517. }
  518. break;
  519. }
  520. case SerializableFT_Plain:
  521. {
  522. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  523. for(int i = 0; i < arrayNumElems; i++)
  524. {
  525. UINT32 typeSize = fieldSize;
  526. if(hasDynamicSize)
  527. memcpy(&typeSize, data, sizeof(UINT32));
  528. if(curField != nullptr)
  529. curField->arrayElemFromBuffer(object.get(), i, data);
  530. data += typeSize;
  531. bytesRead += typeSize;
  532. }
  533. break;
  534. }
  535. default:
  536. CM_EXCEPT(InternalErrorException,
  537. "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) +
  538. ", Is array: " + toString(isArray));
  539. }
  540. }
  541. else
  542. {
  543. switch(fieldType)
  544. {
  545. case SerializableFT_ReflectablePtr:
  546. {
  547. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  548. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  549. {
  550. CM_EXCEPT(InternalErrorException,
  551. "Error decoding data.");
  552. }
  553. int objectId = 0;
  554. memcpy(&objectId, data, COMPLEX_TYPE_FIELD_SIZE);
  555. data += COMPLEX_TYPE_FIELD_SIZE;
  556. bytesRead += COMPLEX_TYPE_FIELD_SIZE;
  557. if(curField != nullptr)
  558. {
  559. std::shared_ptr<IReflectable> resolvedObject = nullptr;
  560. auto findIter = mObjectMap.find(objectId);
  561. if(findIter != mObjectMap.end())
  562. resolvedObject = findIter->second;
  563. curField->setValue(object.get(), resolvedObject);
  564. }
  565. break;
  566. }
  567. case SerializableFT_Reflectable:
  568. {
  569. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  570. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  571. {
  572. CM_EXCEPT(InternalErrorException,
  573. "Error decoding data.");
  574. }
  575. int complexTypeSize = 0;
  576. if(curField != nullptr)
  577. {
  578. std::shared_ptr<IReflectable> complexType = complexTypeFromBuffer(curField, data, &complexTypeSize);
  579. curField->setValue(object.get(), *complexType);
  580. }
  581. else
  582. {
  583. memcpy(&complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  584. complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  585. }
  586. data += complexTypeSize;
  587. bytesRead += complexTypeSize;
  588. break;
  589. }
  590. case SerializableFT_Plain:
  591. {
  592. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  593. UINT32 typeSize = fieldSize;
  594. if(hasDynamicSize)
  595. memcpy(&typeSize, data, sizeof(UINT32));
  596. if(curField != nullptr)
  597. curField->fromBuffer(object.get(), data);
  598. data += typeSize;
  599. bytesRead += typeSize;
  600. break;
  601. }
  602. case SerializableFT_DataBlock:
  603. {
  604. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  605. if((bytesRead + DATA_BLOCK_TYPE_FIELD_SIZE) > dataLength)
  606. {
  607. CM_EXCEPT(InternalErrorException,
  608. "Error decoding data.");
  609. }
  610. // Data block size
  611. UINT32 dataBlockSize = 0;
  612. memcpy(&dataBlockSize, data, DATA_BLOCK_TYPE_FIELD_SIZE);
  613. data += DATA_BLOCK_TYPE_FIELD_SIZE;
  614. bytesRead += DATA_BLOCK_TYPE_FIELD_SIZE;
  615. if((bytesRead + dataBlockSize) > dataLength)
  616. {
  617. CM_EXCEPT(InternalErrorException,
  618. "Error decoding data.");
  619. }
  620. // Data block data
  621. if(curField != nullptr)
  622. {
  623. UINT8* dataCopy = new UINT8[dataBlockSize]; // TODO - Low priority. I need to read files better, so I
  624. memcpy(dataCopy, data, dataBlockSize); // can just pass the buffer pointer directly without copying (possibly large amounts of data)
  625. ManagedDataBlock value(dataCopy, dataBlockSize, false); // Not managed because I assume the owner class will decide whether to delete the data or keep it
  626. curField->setValue(object.get(), value);
  627. }
  628. data += dataBlockSize;
  629. bytesRead += dataBlockSize;
  630. break;
  631. }
  632. default:
  633. CM_EXCEPT(InternalErrorException,
  634. "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) +
  635. ", Is array: " + toString(isArray));
  636. }
  637. }
  638. }
  639. return false;
  640. }
  641. // TODO - This needs serious fixing, it doesn't account for all properties
  642. UINT32 BinarySerializer::getObjectSize(IReflectable* object)
  643. {
  644. if(object == nullptr)
  645. return 0;
  646. UINT32 objectSize = 0;
  647. RTTITypeBase* si = object->getRTTI();
  648. do
  649. {
  650. // Object ID + type data
  651. objectSize += sizeof(ObjectMetaData);
  652. int numFields = si->getNumFields();
  653. for(int i = 0; i < numFields; i++)
  654. {
  655. RTTIField* curGenericField = si->getField(i);
  656. // Field meta data
  657. objectSize += sizeof(UINT32);
  658. if(curGenericField->mIsVectorType)
  659. {
  660. UINT32 arrayNumElems = curGenericField->getArraySize(object);
  661. // Num array elems
  662. objectSize += sizeof(UINT32);
  663. switch(curGenericField->mType)
  664. {
  665. case SerializableFT_ReflectablePtr:
  666. {
  667. objectSize += sizeof(UINT32) * arrayNumElems;
  668. break;
  669. }
  670. case SerializableFT_Reflectable:
  671. {
  672. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  673. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  674. {
  675. IReflectable& childObject = curField->getArrayValue(object, arrIdx);
  676. objectSize += getObjectSize(&childObject);
  677. }
  678. break;
  679. }
  680. case SerializableFT_Plain:
  681. {
  682. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  683. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  684. {
  685. UINT32 typeSize = 0;
  686. if(curField->hasDynamicSize())
  687. typeSize = curField->getArrayElemDynamicSize(object, arrIdx);
  688. else
  689. typeSize = curField->getTypeSize();
  690. objectSize += typeSize;
  691. }
  692. break;
  693. }
  694. default:
  695. CM_EXCEPT(InternalErrorException,
  696. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  697. ", Is array: " + toString(curGenericField->mIsVectorType));
  698. }
  699. }
  700. else
  701. {
  702. switch(curGenericField->mType)
  703. {
  704. case SerializableFT_ReflectablePtr:
  705. {
  706. objectSize += sizeof(UINT32);
  707. break;
  708. }
  709. case SerializableFT_Reflectable:
  710. {
  711. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  712. IReflectable& childObject = curField->getValue(object);
  713. objectSize += getObjectSize(&childObject);
  714. break;
  715. }
  716. case SerializableFT_Plain:
  717. {
  718. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  719. UINT32 typeSize = 0;
  720. if(curField->hasDynamicSize())
  721. typeSize = curField->getDynamicSize(object);
  722. else
  723. typeSize = curField->getTypeSize();
  724. objectSize += typeSize;
  725. break;
  726. }
  727. case SerializableFT_DataBlock:
  728. {
  729. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  730. ManagedDataBlock value = curField->getValue(object);
  731. // Data block size
  732. UINT32 dataBlockSize = value.getSize();
  733. objectSize += sizeof(UINT32) + dataBlockSize;
  734. break;
  735. }
  736. default:
  737. CM_EXCEPT(InternalErrorException,
  738. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  739. ", Is array: " + toString(curGenericField->mIsVectorType));
  740. }
  741. }
  742. }
  743. si = si->getBaseClass();
  744. } while (si != nullptr);
  745. return objectSize;
  746. }
  747. UINT32 BinarySerializer::encodeFieldMetaData(UINT16 id, UINT8 size, bool array, SerializableFieldType type, bool hasDynamicSize)
  748. {
  749. // If O == 0 - Meta contains field information (Encoded using this method)
  750. //// Encoding: IIII IIII IIII IIII SSSS SSSS xxYP DCAO
  751. //// I - Id
  752. //// S - Size
  753. //// C - Complex
  754. //// A - Array
  755. //// D - Data block
  756. //// P - Complex ptr
  757. //// O - Object descriptor
  758. //// Y - Simple field has dynamic size
  759. return (id << 16 | size << 8 |
  760. (array ? 0x02 : 0) |
  761. ((type == SerializableFT_DataBlock) ? 0x04 : 0) |
  762. ((type == SerializableFT_Reflectable) ? 0x08 : 0) |
  763. ((type == SerializableFT_ReflectablePtr) ? 0x10 : 0) |
  764. (hasDynamicSize ? 0x20 : 0)); // TODO - Low priority. Technically I could encode this much more tightly, and use var-ints for ID
  765. }
  766. void BinarySerializer::decodeFieldMetaData(UINT32 encodedData, UINT16& id, UINT8& size, bool& array, SerializableFieldType& type, bool& hasDynamicSize)
  767. {
  768. if(isObjectMetaData(encodedData))
  769. {
  770. CM_EXCEPT(InternalErrorException,
  771. "Meta data represents an object description but is trying to be decoded as a field descriptor.");
  772. }
  773. hasDynamicSize = (encodedData & 0x20) != 0;
  774. if((encodedData & 0x10) != 0)
  775. type = SerializableFT_ReflectablePtr;
  776. else if((encodedData & 0x08) != 0)
  777. type = SerializableFT_Reflectable;
  778. else if((encodedData & 0x04) != 0)
  779. type = SerializableFT_DataBlock;
  780. else
  781. type = SerializableFT_Plain;
  782. array = (encodedData & 0x02) != 0;
  783. size = (UINT8)((encodedData >> 8) & 0xFF);
  784. id = (UINT16)((encodedData >> 16) & 0xFFFF);
  785. }
  786. BinarySerializer::ObjectMetaData BinarySerializer::encodeObjectMetaData(UINT32 objId, UINT32 objTypeId, bool isBaseClass)
  787. {
  788. // If O == 1 - Meta contains object instance information (Encoded using encodeObjectMetaData)
  789. //// Encoding: SSSS SSSS SSSS SSSS xxxx xxxx xxxx xxBO
  790. //// S - Size of the object identifier
  791. //// O - Object descriptor
  792. //// B - Base class indicator
  793. if(objId > 1073741823)
  794. {
  795. CM_EXCEPT(InvalidParametersException, "Object ID is larger than we can store (max 30 bits): " + toString(objId));
  796. }
  797. ObjectMetaData metaData;
  798. metaData.objectMeta = (objId << 2) | (isBaseClass ? 0x02 : 0) | 0x01;
  799. metaData.typeId = objTypeId;
  800. return metaData;
  801. }
  802. void BinarySerializer::decodeObjectMetaData(BinarySerializer::ObjectMetaData encodedData, UINT32& objId, UINT32& objTypeId, bool& isBaseClass)
  803. {
  804. if(!isObjectMetaData(encodedData.objectMeta))
  805. {
  806. CM_EXCEPT(InternalErrorException,
  807. "Meta data represents a field description but is trying to be decoded as an object descriptor.");
  808. }
  809. objId = (encodedData.objectMeta >> 2) & 0x3FFFFFFF;
  810. isBaseClass = (encodedData.objectMeta & 0x02) != 0;
  811. objTypeId = encodedData.typeId;
  812. }
  813. bool BinarySerializer::isObjectMetaData(UINT32 encodedData)
  814. {
  815. return ((encodedData & 0x01) != 0);
  816. }
  817. UINT8* BinarySerializer::complexTypeToBuffer(IReflectable* object, UINT8* buffer, UINT32& bufferLength,
  818. int* bytesWritten, boost::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  819. {
  820. static const UINT32 COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  821. int complexTypeSize = 0;
  822. if(object != nullptr)
  823. complexTypeSize = getObjectSize(object);
  824. COPY_TO_BUFFER(&complexTypeSize, COMPLEX_TYPE_FIELD_SIZE)
  825. if(object != nullptr)
  826. return encodeInternal(object, 0, buffer, bufferLength, bytesWritten, flushBufferCallback);
  827. return buffer;
  828. }
  829. std::shared_ptr<IReflectable> BinarySerializer::complexTypeFromBuffer(RTTIReflectableFieldBase* field, UINT8* data, int* complexTypeSize)
  830. {
  831. static const int COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  832. memcpy(complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  833. data += COMPLEX_TYPE_FIELD_SIZE;
  834. std::shared_ptr<IReflectable> emptyObject = nullptr;
  835. if(*complexTypeSize > 0)
  836. {
  837. emptyObject = field->newObject();
  838. UINT32 dummy = 0;
  839. decodeInternal(emptyObject, data, *complexTypeSize, dummy);
  840. }
  841. *complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  842. return emptyObject;
  843. }
  844. UINT32 BinarySerializer::findOrCreatePersistentId(IReflectable* object)
  845. {
  846. UINT32 ptrAddress = (UINT32)object;
  847. auto findIter = mObjectAddrToId.find(ptrAddress);
  848. if(findIter != mObjectAddrToId.end())
  849. return findIter->second;
  850. UINT32 objId = mLastUsedObjectId++;
  851. mObjectAddrToId.insert(std::make_pair(ptrAddress, objId));
  852. return objId;
  853. }
  854. UINT32 BinarySerializer::registerObjectPtr(std::shared_ptr<IReflectable> object)
  855. {
  856. if(object == nullptr)
  857. return 0;
  858. UINT32 ptrAddress = (UINT32)object.get();
  859. auto iterFind = mObjectAddrToId.find(ptrAddress);
  860. if(iterFind == mObjectAddrToId.end())
  861. {
  862. UINT32 objId = findOrCreatePersistentId(object.get());
  863. mObjectsToEncode.push_back(ObjectToEncode(objId, object));
  864. mObjectAddrToId.insert(std::make_pair(ptrAddress, objId));
  865. return objId;
  866. }
  867. return iterFind->second;
  868. }
  869. }
  870. #undef COPY_TO_BUFFER