CmMatrix3.cpp 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. /*
  2. -----------------------------------------------------------------------------
  3. This source file is part of OGRE
  4. (Object-oriented Graphics Rendering Engine)
  5. For the latest info, see http://www.ogre3d.org/
  6. Copyright (c) 2000-2011 Torus Knot Software Ltd
  7. Permission is hereby granted, free of charge, to any person obtaining a copy
  8. of this software and associated documentation files (the "Software"), to deal
  9. in the Software without restriction, including without limitation the rights
  10. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. copies of the Software, and to permit persons to whom the Software is
  12. furnished to do so, subject to the following conditions:
  13. The above copyright notice and this permission notice shall be included in
  14. all copies or substantial portions of the Software.
  15. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. THE SOFTWARE.
  22. -----------------------------------------------------------------------------
  23. */
  24. #include "CmMatrix3.h"
  25. #include "CmMath.h"
  26. // Adapted from Matrix math by Wild Magic http://www.geometrictools.com/
  27. namespace CamelotEngine
  28. {
  29. const float Matrix3::EPSILON = 1e-06f;
  30. const Matrix3 Matrix3::ZERO(0,0,0,0,0,0,0,0,0);
  31. const Matrix3 Matrix3::IDENTITY(1,0,0,0,1,0,0,0,1);
  32. const float Matrix3::ms_fSvdEpsilon = 1e-04f;
  33. const unsigned int Matrix3::ms_iSvdMaxIterations = 32;
  34. //-----------------------------------------------------------------------
  35. Vector3 Matrix3::GetColumn (size_t iCol) const
  36. {
  37. assert( 0 <= iCol && iCol < 3 );
  38. return Vector3(m[0][iCol],m[1][iCol],
  39. m[2][iCol]);
  40. }
  41. //-----------------------------------------------------------------------
  42. void Matrix3::SetColumn(size_t iCol, const Vector3& vec)
  43. {
  44. assert( 0 <= iCol && iCol < 3 );
  45. m[0][iCol] = vec.x;
  46. m[1][iCol] = vec.y;
  47. m[2][iCol] = vec.z;
  48. }
  49. //-----------------------------------------------------------------------
  50. void Matrix3::FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis)
  51. {
  52. SetColumn(0,xAxis);
  53. SetColumn(1,yAxis);
  54. SetColumn(2,zAxis);
  55. }
  56. //-----------------------------------------------------------------------
  57. bool Matrix3::operator== (const Matrix3& rkMatrix) const
  58. {
  59. for (size_t iRow = 0; iRow < 3; iRow++)
  60. {
  61. for (size_t iCol = 0; iCol < 3; iCol++)
  62. {
  63. if ( m[iRow][iCol] != rkMatrix.m[iRow][iCol] )
  64. return false;
  65. }
  66. }
  67. return true;
  68. }
  69. //-----------------------------------------------------------------------
  70. Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const
  71. {
  72. Matrix3 kSum;
  73. for (size_t iRow = 0; iRow < 3; iRow++)
  74. {
  75. for (size_t iCol = 0; iCol < 3; iCol++)
  76. {
  77. kSum.m[iRow][iCol] = m[iRow][iCol] +
  78. rkMatrix.m[iRow][iCol];
  79. }
  80. }
  81. return kSum;
  82. }
  83. //-----------------------------------------------------------------------
  84. Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const
  85. {
  86. Matrix3 kDiff;
  87. for (size_t iRow = 0; iRow < 3; iRow++)
  88. {
  89. for (size_t iCol = 0; iCol < 3; iCol++)
  90. {
  91. kDiff.m[iRow][iCol] = m[iRow][iCol] -
  92. rkMatrix.m[iRow][iCol];
  93. }
  94. }
  95. return kDiff;
  96. }
  97. //-----------------------------------------------------------------------
  98. Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const
  99. {
  100. Matrix3 kProd;
  101. for (size_t iRow = 0; iRow < 3; iRow++)
  102. {
  103. for (size_t iCol = 0; iCol < 3; iCol++)
  104. {
  105. kProd.m[iRow][iCol] =
  106. m[iRow][0]*rkMatrix.m[0][iCol] +
  107. m[iRow][1]*rkMatrix.m[1][iCol] +
  108. m[iRow][2]*rkMatrix.m[2][iCol];
  109. }
  110. }
  111. return kProd;
  112. }
  113. //-----------------------------------------------------------------------
  114. Vector3 Matrix3::operator* (const Vector3& rkPoint) const
  115. {
  116. Vector3 kProd;
  117. for (size_t iRow = 0; iRow < 3; iRow++)
  118. {
  119. kProd[iRow] =
  120. m[iRow][0]*rkPoint[0] +
  121. m[iRow][1]*rkPoint[1] +
  122. m[iRow][2]*rkPoint[2];
  123. }
  124. return kProd;
  125. }
  126. //-----------------------------------------------------------------------
  127. Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix)
  128. {
  129. Vector3 kProd;
  130. for (size_t iRow = 0; iRow < 3; iRow++)
  131. {
  132. kProd[iRow] =
  133. rkPoint[0]*rkMatrix.m[0][iRow] +
  134. rkPoint[1]*rkMatrix.m[1][iRow] +
  135. rkPoint[2]*rkMatrix.m[2][iRow];
  136. }
  137. return kProd;
  138. }
  139. //-----------------------------------------------------------------------
  140. Matrix3 Matrix3::operator- () const
  141. {
  142. Matrix3 kNeg;
  143. for (size_t iRow = 0; iRow < 3; iRow++)
  144. {
  145. for (size_t iCol = 0; iCol < 3; iCol++)
  146. kNeg[iRow][iCol] = -m[iRow][iCol];
  147. }
  148. return kNeg;
  149. }
  150. //-----------------------------------------------------------------------
  151. Matrix3 Matrix3::operator* (float fScalar) const
  152. {
  153. Matrix3 kProd;
  154. for (size_t iRow = 0; iRow < 3; iRow++)
  155. {
  156. for (size_t iCol = 0; iCol < 3; iCol++)
  157. kProd[iRow][iCol] = fScalar*m[iRow][iCol];
  158. }
  159. return kProd;
  160. }
  161. //-----------------------------------------------------------------------
  162. Matrix3 operator* (float fScalar, const Matrix3& rkMatrix)
  163. {
  164. Matrix3 kProd;
  165. for (size_t iRow = 0; iRow < 3; iRow++)
  166. {
  167. for (size_t iCol = 0; iCol < 3; iCol++)
  168. kProd[iRow][iCol] = fScalar*rkMatrix.m[iRow][iCol];
  169. }
  170. return kProd;
  171. }
  172. //-----------------------------------------------------------------------
  173. Matrix3 Matrix3::Transpose () const
  174. {
  175. Matrix3 kTranspose;
  176. for (size_t iRow = 0; iRow < 3; iRow++)
  177. {
  178. for (size_t iCol = 0; iCol < 3; iCol++)
  179. kTranspose[iRow][iCol] = m[iCol][iRow];
  180. }
  181. return kTranspose;
  182. }
  183. //-----------------------------------------------------------------------
  184. bool Matrix3::Inverse (Matrix3& rkInverse, float fTolerance) const
  185. {
  186. // Invert a 3x3 using cofactors. This is about 8 times faster than
  187. // the Numerical Recipes code which uses Gaussian elimination.
  188. rkInverse[0][0] = m[1][1]*m[2][2] -
  189. m[1][2]*m[2][1];
  190. rkInverse[0][1] = m[0][2]*m[2][1] -
  191. m[0][1]*m[2][2];
  192. rkInverse[0][2] = m[0][1]*m[1][2] -
  193. m[0][2]*m[1][1];
  194. rkInverse[1][0] = m[1][2]*m[2][0] -
  195. m[1][0]*m[2][2];
  196. rkInverse[1][1] = m[0][0]*m[2][2] -
  197. m[0][2]*m[2][0];
  198. rkInverse[1][2] = m[0][2]*m[1][0] -
  199. m[0][0]*m[1][2];
  200. rkInverse[2][0] = m[1][0]*m[2][1] -
  201. m[1][1]*m[2][0];
  202. rkInverse[2][1] = m[0][1]*m[2][0] -
  203. m[0][0]*m[2][1];
  204. rkInverse[2][2] = m[0][0]*m[1][1] -
  205. m[0][1]*m[1][0];
  206. float fDet =
  207. m[0][0]*rkInverse[0][0] +
  208. m[0][1]*rkInverse[1][0]+
  209. m[0][2]*rkInverse[2][0];
  210. if ( Math::Abs(fDet) <= fTolerance )
  211. return false;
  212. float fInvDet = 1.0f/fDet;
  213. for (size_t iRow = 0; iRow < 3; iRow++)
  214. {
  215. for (size_t iCol = 0; iCol < 3; iCol++)
  216. rkInverse[iRow][iCol] *= fInvDet;
  217. }
  218. return true;
  219. }
  220. //-----------------------------------------------------------------------
  221. Matrix3 Matrix3::Inverse (float fTolerance) const
  222. {
  223. Matrix3 kInverse = Matrix3::ZERO;
  224. Inverse(kInverse,fTolerance);
  225. return kInverse;
  226. }
  227. //-----------------------------------------------------------------------
  228. float Matrix3::Determinant () const
  229. {
  230. float fCofactor00 = m[1][1]*m[2][2] -
  231. m[1][2]*m[2][1];
  232. float fCofactor10 = m[1][2]*m[2][0] -
  233. m[1][0]*m[2][2];
  234. float fCofactor20 = m[1][0]*m[2][1] -
  235. m[1][1]*m[2][0];
  236. float fDet =
  237. m[0][0]*fCofactor00 +
  238. m[0][1]*fCofactor10 +
  239. m[0][2]*fCofactor20;
  240. return fDet;
  241. }
  242. //-----------------------------------------------------------------------
  243. void Matrix3::Bidiagonalize (Matrix3& kA, Matrix3& kL,
  244. Matrix3& kR)
  245. {
  246. float afV[3], afW[3];
  247. float fLength, fSign, fT1, fInvT1, fT2;
  248. bool bIdentity;
  249. // map first column to (*,0,0)
  250. fLength = Math::Sqrt(kA[0][0]*kA[0][0] + kA[1][0]*kA[1][0] +
  251. kA[2][0]*kA[2][0]);
  252. if ( fLength > 0.0 )
  253. {
  254. fSign = (kA[0][0] > 0.0f ? 1.0f : -1.0f);
  255. fT1 = kA[0][0] + fSign*fLength;
  256. fInvT1 = 1.0f/fT1;
  257. afV[1] = kA[1][0]*fInvT1;
  258. afV[2] = kA[2][0]*fInvT1;
  259. fT2 = -2.0f/(1.0f+afV[1]*afV[1]+afV[2]*afV[2]);
  260. afW[0] = fT2*(kA[0][0]+kA[1][0]*afV[1]+kA[2][0]*afV[2]);
  261. afW[1] = fT2*(kA[0][1]+kA[1][1]*afV[1]+kA[2][1]*afV[2]);
  262. afW[2] = fT2*(kA[0][2]+kA[1][2]*afV[1]+kA[2][2]*afV[2]);
  263. kA[0][0] += afW[0];
  264. kA[0][1] += afW[1];
  265. kA[0][2] += afW[2];
  266. kA[1][1] += afV[1]*afW[1];
  267. kA[1][2] += afV[1]*afW[2];
  268. kA[2][1] += afV[2]*afW[1];
  269. kA[2][2] += afV[2]*afW[2];
  270. kL[0][0] = 1.0f+fT2;
  271. kL[0][1] = kL[1][0] = fT2*afV[1];
  272. kL[0][2] = kL[2][0] = fT2*afV[2];
  273. kL[1][1] = 1.0f+fT2*afV[1]*afV[1];
  274. kL[1][2] = kL[2][1] = fT2*afV[1]*afV[2];
  275. kL[2][2] = 1.0f+fT2*afV[2]*afV[2];
  276. bIdentity = false;
  277. }
  278. else
  279. {
  280. kL = Matrix3::IDENTITY;
  281. bIdentity = true;
  282. }
  283. // map first row to (*,*,0)
  284. fLength = Math::Sqrt(kA[0][1]*kA[0][1]+kA[0][2]*kA[0][2]);
  285. if ( fLength > 0.0 )
  286. {
  287. fSign = (kA[0][1] > 0.0f ? 1.0f : -1.0f);
  288. fT1 = kA[0][1] + fSign*fLength;
  289. afV[2] = kA[0][2]/fT1;
  290. fT2 = -2.0f/(1.0f+afV[2]*afV[2]);
  291. afW[0] = fT2*(kA[0][1]+kA[0][2]*afV[2]);
  292. afW[1] = fT2*(kA[1][1]+kA[1][2]*afV[2]);
  293. afW[2] = fT2*(kA[2][1]+kA[2][2]*afV[2]);
  294. kA[0][1] += afW[0];
  295. kA[1][1] += afW[1];
  296. kA[1][2] += afW[1]*afV[2];
  297. kA[2][1] += afW[2];
  298. kA[2][2] += afW[2]*afV[2];
  299. kR[0][0] = 1.0;
  300. kR[0][1] = kR[1][0] = 0.0;
  301. kR[0][2] = kR[2][0] = 0.0;
  302. kR[1][1] = 1.0f+fT2;
  303. kR[1][2] = kR[2][1] = fT2*afV[2];
  304. kR[2][2] = 1.0f+fT2*afV[2]*afV[2];
  305. }
  306. else
  307. {
  308. kR = Matrix3::IDENTITY;
  309. }
  310. // map second column to (*,*,0)
  311. fLength = Math::Sqrt(kA[1][1]*kA[1][1]+kA[2][1]*kA[2][1]);
  312. if ( fLength > 0.0 )
  313. {
  314. fSign = (kA[1][1] > 0.0f ? 1.0f : -1.0f);
  315. fT1 = kA[1][1] + fSign*fLength;
  316. afV[2] = kA[2][1]/fT1;
  317. fT2 = -2.0f/(1.0f+afV[2]*afV[2]);
  318. afW[1] = fT2*(kA[1][1]+kA[2][1]*afV[2]);
  319. afW[2] = fT2*(kA[1][2]+kA[2][2]*afV[2]);
  320. kA[1][1] += afW[1];
  321. kA[1][2] += afW[2];
  322. kA[2][2] += afV[2]*afW[2];
  323. float fA = 1.0f+fT2;
  324. float fB = fT2*afV[2];
  325. float fC = 1.0f+fB*afV[2];
  326. if ( bIdentity )
  327. {
  328. kL[0][0] = 1.0;
  329. kL[0][1] = kL[1][0] = 0.0;
  330. kL[0][2] = kL[2][0] = 0.0;
  331. kL[1][1] = fA;
  332. kL[1][2] = kL[2][1] = fB;
  333. kL[2][2] = fC;
  334. }
  335. else
  336. {
  337. for (int iRow = 0; iRow < 3; iRow++)
  338. {
  339. float fTmp0 = kL[iRow][1];
  340. float fTmp1 = kL[iRow][2];
  341. kL[iRow][1] = fA*fTmp0+fB*fTmp1;
  342. kL[iRow][2] = fB*fTmp0+fC*fTmp1;
  343. }
  344. }
  345. }
  346. }
  347. //-----------------------------------------------------------------------
  348. void Matrix3::GolubKahanStep (Matrix3& kA, Matrix3& kL,
  349. Matrix3& kR)
  350. {
  351. float fT11 = kA[0][1]*kA[0][1]+kA[1][1]*kA[1][1];
  352. float fT22 = kA[1][2]*kA[1][2]+kA[2][2]*kA[2][2];
  353. float fT12 = kA[1][1]*kA[1][2];
  354. float fTrace = fT11+fT22;
  355. float fDiff = fT11-fT22;
  356. float fDiscr = Math::Sqrt(fDiff*fDiff+4.0f*fT12*fT12);
  357. float fRoot1 = 0.5f*(fTrace+fDiscr);
  358. float fRoot2 = 0.5f*(fTrace-fDiscr);
  359. // adjust right
  360. float fY = kA[0][0] - (Math::Abs(fRoot1-fT22) <=
  361. Math::Abs(fRoot2-fT22) ? fRoot1 : fRoot2);
  362. float fZ = kA[0][1];
  363. float fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
  364. float fSin = fZ*fInvLength;
  365. float fCos = -fY*fInvLength;
  366. float fTmp0 = kA[0][0];
  367. float fTmp1 = kA[0][1];
  368. kA[0][0] = fCos*fTmp0-fSin*fTmp1;
  369. kA[0][1] = fSin*fTmp0+fCos*fTmp1;
  370. kA[1][0] = -fSin*kA[1][1];
  371. kA[1][1] *= fCos;
  372. size_t iRow;
  373. for (iRow = 0; iRow < 3; iRow++)
  374. {
  375. fTmp0 = kR[0][iRow];
  376. fTmp1 = kR[1][iRow];
  377. kR[0][iRow] = fCos*fTmp0-fSin*fTmp1;
  378. kR[1][iRow] = fSin*fTmp0+fCos*fTmp1;
  379. }
  380. // adjust left
  381. fY = kA[0][0];
  382. fZ = kA[1][0];
  383. fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
  384. fSin = fZ*fInvLength;
  385. fCos = -fY*fInvLength;
  386. kA[0][0] = fCos*kA[0][0]-fSin*kA[1][0];
  387. fTmp0 = kA[0][1];
  388. fTmp1 = kA[1][1];
  389. kA[0][1] = fCos*fTmp0-fSin*fTmp1;
  390. kA[1][1] = fSin*fTmp0+fCos*fTmp1;
  391. kA[0][2] = -fSin*kA[1][2];
  392. kA[1][2] *= fCos;
  393. size_t iCol;
  394. for (iCol = 0; iCol < 3; iCol++)
  395. {
  396. fTmp0 = kL[iCol][0];
  397. fTmp1 = kL[iCol][1];
  398. kL[iCol][0] = fCos*fTmp0-fSin*fTmp1;
  399. kL[iCol][1] = fSin*fTmp0+fCos*fTmp1;
  400. }
  401. // adjust right
  402. fY = kA[0][1];
  403. fZ = kA[0][2];
  404. fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
  405. fSin = fZ*fInvLength;
  406. fCos = -fY*fInvLength;
  407. kA[0][1] = fCos*kA[0][1]-fSin*kA[0][2];
  408. fTmp0 = kA[1][1];
  409. fTmp1 = kA[1][2];
  410. kA[1][1] = fCos*fTmp0-fSin*fTmp1;
  411. kA[1][2] = fSin*fTmp0+fCos*fTmp1;
  412. kA[2][1] = -fSin*kA[2][2];
  413. kA[2][2] *= fCos;
  414. for (iRow = 0; iRow < 3; iRow++)
  415. {
  416. fTmp0 = kR[1][iRow];
  417. fTmp1 = kR[2][iRow];
  418. kR[1][iRow] = fCos*fTmp0-fSin*fTmp1;
  419. kR[2][iRow] = fSin*fTmp0+fCos*fTmp1;
  420. }
  421. // adjust left
  422. fY = kA[1][1];
  423. fZ = kA[2][1];
  424. fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
  425. fSin = fZ*fInvLength;
  426. fCos = -fY*fInvLength;
  427. kA[1][1] = fCos*kA[1][1]-fSin*kA[2][1];
  428. fTmp0 = kA[1][2];
  429. fTmp1 = kA[2][2];
  430. kA[1][2] = fCos*fTmp0-fSin*fTmp1;
  431. kA[2][2] = fSin*fTmp0+fCos*fTmp1;
  432. for (iCol = 0; iCol < 3; iCol++)
  433. {
  434. fTmp0 = kL[iCol][1];
  435. fTmp1 = kL[iCol][2];
  436. kL[iCol][1] = fCos*fTmp0-fSin*fTmp1;
  437. kL[iCol][2] = fSin*fTmp0+fCos*fTmp1;
  438. }
  439. }
  440. //-----------------------------------------------------------------------
  441. void Matrix3::SingularValueDecomposition (Matrix3& kL, Vector3& kS,
  442. Matrix3& kR) const
  443. {
  444. // temas: currently unused
  445. //const int iMax = 16;
  446. size_t iRow, iCol;
  447. Matrix3 kA = *this;
  448. Bidiagonalize(kA,kL,kR);
  449. for (unsigned int i = 0; i < ms_iSvdMaxIterations; i++)
  450. {
  451. float fTmp, fTmp0, fTmp1;
  452. float fSin0, fCos0, fTan0;
  453. float fSin1, fCos1, fTan1;
  454. bool bTest1 = (Math::Abs(kA[0][1]) <=
  455. ms_fSvdEpsilon*(Math::Abs(kA[0][0])+Math::Abs(kA[1][1])));
  456. bool bTest2 = (Math::Abs(kA[1][2]) <=
  457. ms_fSvdEpsilon*(Math::Abs(kA[1][1])+Math::Abs(kA[2][2])));
  458. if ( bTest1 )
  459. {
  460. if ( bTest2 )
  461. {
  462. kS[0] = kA[0][0];
  463. kS[1] = kA[1][1];
  464. kS[2] = kA[2][2];
  465. break;
  466. }
  467. else
  468. {
  469. // 2x2 closed form factorization
  470. fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] +
  471. kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]);
  472. fTan0 = 0.5f*(fTmp+Math::Sqrt(fTmp*fTmp + 4.0f));
  473. fCos0 = Math::InvSqrt(1.0f+fTan0*fTan0);
  474. fSin0 = fTan0*fCos0;
  475. for (iCol = 0; iCol < 3; iCol++)
  476. {
  477. fTmp0 = kL[iCol][1];
  478. fTmp1 = kL[iCol][2];
  479. kL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1;
  480. kL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1;
  481. }
  482. fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1];
  483. fCos1 = Math::InvSqrt(1.0f+fTan1*fTan1);
  484. fSin1 = -fTan1*fCos1;
  485. for (iRow = 0; iRow < 3; iRow++)
  486. {
  487. fTmp0 = kR[1][iRow];
  488. fTmp1 = kR[2][iRow];
  489. kR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1;
  490. kR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1;
  491. }
  492. kS[0] = kA[0][0];
  493. kS[1] = fCos0*fCos1*kA[1][1] -
  494. fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]);
  495. kS[2] = fSin0*fSin1*kA[1][1] +
  496. fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]);
  497. break;
  498. }
  499. }
  500. else
  501. {
  502. if ( bTest2 )
  503. {
  504. // 2x2 closed form factorization
  505. fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] -
  506. kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]);
  507. fTan0 = 0.5f*(-fTmp+Math::Sqrt(fTmp*fTmp + 4.0f));
  508. fCos0 = Math::InvSqrt(1.0f+fTan0*fTan0);
  509. fSin0 = fTan0*fCos0;
  510. for (iCol = 0; iCol < 3; iCol++)
  511. {
  512. fTmp0 = kL[iCol][0];
  513. fTmp1 = kL[iCol][1];
  514. kL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1;
  515. kL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1;
  516. }
  517. fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0];
  518. fCos1 = Math::InvSqrt(1.0f+fTan1*fTan1);
  519. fSin1 = -fTan1*fCos1;
  520. for (iRow = 0; iRow < 3; iRow++)
  521. {
  522. fTmp0 = kR[0][iRow];
  523. fTmp1 = kR[1][iRow];
  524. kR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1;
  525. kR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1;
  526. }
  527. kS[0] = fCos0*fCos1*kA[0][0] -
  528. fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]);
  529. kS[1] = fSin0*fSin1*kA[0][0] +
  530. fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]);
  531. kS[2] = kA[2][2];
  532. break;
  533. }
  534. else
  535. {
  536. GolubKahanStep(kA,kL,kR);
  537. }
  538. }
  539. }
  540. // positize diagonal
  541. for (iRow = 0; iRow < 3; iRow++)
  542. {
  543. if ( kS[iRow] < 0.0 )
  544. {
  545. kS[iRow] = -kS[iRow];
  546. for (iCol = 0; iCol < 3; iCol++)
  547. kR[iRow][iCol] = -kR[iRow][iCol];
  548. }
  549. }
  550. }
  551. //-----------------------------------------------------------------------
  552. void Matrix3::SingularValueComposition (const Matrix3& kL,
  553. const Vector3& kS, const Matrix3& kR)
  554. {
  555. size_t iRow, iCol;
  556. Matrix3 kTmp;
  557. // product S*R
  558. for (iRow = 0; iRow < 3; iRow++)
  559. {
  560. for (iCol = 0; iCol < 3; iCol++)
  561. kTmp[iRow][iCol] = kS[iRow]*kR[iRow][iCol];
  562. }
  563. // product L*S*R
  564. for (iRow = 0; iRow < 3; iRow++)
  565. {
  566. for (iCol = 0; iCol < 3; iCol++)
  567. {
  568. m[iRow][iCol] = 0.0;
  569. for (int iMid = 0; iMid < 3; iMid++)
  570. m[iRow][iCol] += kL[iRow][iMid]*kTmp[iMid][iCol];
  571. }
  572. }
  573. }
  574. //-----------------------------------------------------------------------
  575. void Matrix3::Orthonormalize ()
  576. {
  577. // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is
  578. // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2],
  579. //
  580. // q0 = m0/|m0|
  581. // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
  582. // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
  583. //
  584. // where |V| indicates length of vector V and A*B indicates dot
  585. // product of vectors A and B.
  586. // compute q0
  587. float fInvLength = Math::InvSqrt(m[0][0]*m[0][0]
  588. + m[1][0]*m[1][0] +
  589. m[2][0]*m[2][0]);
  590. m[0][0] *= fInvLength;
  591. m[1][0] *= fInvLength;
  592. m[2][0] *= fInvLength;
  593. // compute q1
  594. float fDot0 =
  595. m[0][0]*m[0][1] +
  596. m[1][0]*m[1][1] +
  597. m[2][0]*m[2][1];
  598. m[0][1] -= fDot0*m[0][0];
  599. m[1][1] -= fDot0*m[1][0];
  600. m[2][1] -= fDot0*m[2][0];
  601. fInvLength = Math::InvSqrt(m[0][1]*m[0][1] +
  602. m[1][1]*m[1][1] +
  603. m[2][1]*m[2][1]);
  604. m[0][1] *= fInvLength;
  605. m[1][1] *= fInvLength;
  606. m[2][1] *= fInvLength;
  607. // compute q2
  608. float fDot1 =
  609. m[0][1]*m[0][2] +
  610. m[1][1]*m[1][2] +
  611. m[2][1]*m[2][2];
  612. fDot0 =
  613. m[0][0]*m[0][2] +
  614. m[1][0]*m[1][2] +
  615. m[2][0]*m[2][2];
  616. m[0][2] -= fDot0*m[0][0] + fDot1*m[0][1];
  617. m[1][2] -= fDot0*m[1][0] + fDot1*m[1][1];
  618. m[2][2] -= fDot0*m[2][0] + fDot1*m[2][1];
  619. fInvLength = Math::InvSqrt(m[0][2]*m[0][2] +
  620. m[1][2]*m[1][2] +
  621. m[2][2]*m[2][2]);
  622. m[0][2] *= fInvLength;
  623. m[1][2] *= fInvLength;
  624. m[2][2] *= fInvLength;
  625. }
  626. //-----------------------------------------------------------------------
  627. void Matrix3::QDUDecomposition (Matrix3& kQ,
  628. Vector3& kD, Vector3& kU) const
  629. {
  630. // Factor M = QR = QDU where Q is orthogonal, D is diagonal,
  631. // and U is upper triangular with ones on its diagonal. Algorithm uses
  632. // Gram-Schmidt orthogonalization (the QR algorithm).
  633. //
  634. // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
  635. //
  636. // q0 = m0/|m0|
  637. // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
  638. // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
  639. //
  640. // where |V| indicates length of vector V and A*B indicates dot
  641. // product of vectors A and B. The matrix R has entries
  642. //
  643. // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2
  644. // r10 = 0 r11 = q1*m1 r12 = q1*m2
  645. // r20 = 0 r21 = 0 r22 = q2*m2
  646. //
  647. // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
  648. // u02 = r02/r00, and u12 = r12/r11.
  649. // Q = rotation
  650. // D = scaling
  651. // U = shear
  652. // D stores the three diagonal entries r00, r11, r22
  653. // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12
  654. // build orthogonal matrix Q
  655. float fInvLength = Math::InvSqrt(m[0][0]*m[0][0]
  656. + m[1][0]*m[1][0] +
  657. m[2][0]*m[2][0]);
  658. kQ[0][0] = m[0][0]*fInvLength;
  659. kQ[1][0] = m[1][0]*fInvLength;
  660. kQ[2][0] = m[2][0]*fInvLength;
  661. float fDot = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] +
  662. kQ[2][0]*m[2][1];
  663. kQ[0][1] = m[0][1]-fDot*kQ[0][0];
  664. kQ[1][1] = m[1][1]-fDot*kQ[1][0];
  665. kQ[2][1] = m[2][1]-fDot*kQ[2][0];
  666. fInvLength = Math::InvSqrt(kQ[0][1]*kQ[0][1] + kQ[1][1]*kQ[1][1] +
  667. kQ[2][1]*kQ[2][1]);
  668. kQ[0][1] *= fInvLength;
  669. kQ[1][1] *= fInvLength;
  670. kQ[2][1] *= fInvLength;
  671. fDot = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] +
  672. kQ[2][0]*m[2][2];
  673. kQ[0][2] = m[0][2]-fDot*kQ[0][0];
  674. kQ[1][2] = m[1][2]-fDot*kQ[1][0];
  675. kQ[2][2] = m[2][2]-fDot*kQ[2][0];
  676. fDot = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] +
  677. kQ[2][1]*m[2][2];
  678. kQ[0][2] -= fDot*kQ[0][1];
  679. kQ[1][2] -= fDot*kQ[1][1];
  680. kQ[2][2] -= fDot*kQ[2][1];
  681. fInvLength = Math::InvSqrt(kQ[0][2]*kQ[0][2] + kQ[1][2]*kQ[1][2] +
  682. kQ[2][2]*kQ[2][2]);
  683. kQ[0][2] *= fInvLength;
  684. kQ[1][2] *= fInvLength;
  685. kQ[2][2] *= fInvLength;
  686. // guarantee that orthogonal matrix has determinant 1 (no reflections)
  687. float fDet = kQ[0][0]*kQ[1][1]*kQ[2][2] + kQ[0][1]*kQ[1][2]*kQ[2][0] +
  688. kQ[0][2]*kQ[1][0]*kQ[2][1] - kQ[0][2]*kQ[1][1]*kQ[2][0] -
  689. kQ[0][1]*kQ[1][0]*kQ[2][2] - kQ[0][0]*kQ[1][2]*kQ[2][1];
  690. if ( fDet < 0.0 )
  691. {
  692. for (size_t iRow = 0; iRow < 3; iRow++)
  693. for (size_t iCol = 0; iCol < 3; iCol++)
  694. kQ[iRow][iCol] = -kQ[iRow][iCol];
  695. }
  696. // build "right" matrix R
  697. Matrix3 kR;
  698. kR[0][0] = kQ[0][0]*m[0][0] + kQ[1][0]*m[1][0] +
  699. kQ[2][0]*m[2][0];
  700. kR[0][1] = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] +
  701. kQ[2][0]*m[2][1];
  702. kR[1][1] = kQ[0][1]*m[0][1] + kQ[1][1]*m[1][1] +
  703. kQ[2][1]*m[2][1];
  704. kR[0][2] = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] +
  705. kQ[2][0]*m[2][2];
  706. kR[1][2] = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] +
  707. kQ[2][1]*m[2][2];
  708. kR[2][2] = kQ[0][2]*m[0][2] + kQ[1][2]*m[1][2] +
  709. kQ[2][2]*m[2][2];
  710. // the scaling component
  711. kD[0] = kR[0][0];
  712. kD[1] = kR[1][1];
  713. kD[2] = kR[2][2];
  714. // the shear component
  715. float fInvD0 = 1.0f/kD[0];
  716. kU[0] = kR[0][1]*fInvD0;
  717. kU[1] = kR[0][2]*fInvD0;
  718. kU[2] = kR[1][2]/kD[1];
  719. }
  720. //-----------------------------------------------------------------------
  721. float Matrix3::MaxCubicRoot (float afCoeff[3])
  722. {
  723. // Spectral norm is for A^T*A, so characteristic polynomial
  724. // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive real roots.
  725. // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1].
  726. // quick out for uniform scale (triple root)
  727. const float fOneThird = 1.0f/3.0f;
  728. const float fEpsilon = 1e-06f;
  729. float fDiscr = afCoeff[2]*afCoeff[2] - 3.0f*afCoeff[1];
  730. if ( fDiscr <= fEpsilon )
  731. return -fOneThird*afCoeff[2];
  732. // Compute an upper bound on roots of P(x). This assumes that A^T*A
  733. // has been scaled by its largest entry.
  734. float fX = 1.0;
  735. float fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX));
  736. if ( fPoly < 0.0 )
  737. {
  738. // uses a matrix norm to find an upper bound on maximum root
  739. fX = Math::Abs(afCoeff[0]);
  740. float fTmp = 1.0f+Math::Abs(afCoeff[1]);
  741. if ( fTmp > fX )
  742. fX = fTmp;
  743. fTmp = 1.0f+Math::Abs(afCoeff[2]);
  744. if ( fTmp > fX )
  745. fX = fTmp;
  746. }
  747. // Newton's method to find root
  748. float fTwoC2 = 2.0f*afCoeff[2];
  749. for (int i = 0; i < 16; i++)
  750. {
  751. fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX));
  752. if ( Math::Abs(fPoly) <= fEpsilon )
  753. return fX;
  754. float fDeriv = afCoeff[1]+fX*(fTwoC2+3.0f*fX);
  755. fX -= fPoly/fDeriv;
  756. }
  757. return fX;
  758. }
  759. //-----------------------------------------------------------------------
  760. float Matrix3::SpectralNorm () const
  761. {
  762. Matrix3 kP;
  763. size_t iRow, iCol;
  764. float fPmax = 0.0;
  765. for (iRow = 0; iRow < 3; iRow++)
  766. {
  767. for (iCol = 0; iCol < 3; iCol++)
  768. {
  769. kP[iRow][iCol] = 0.0;
  770. for (int iMid = 0; iMid < 3; iMid++)
  771. {
  772. kP[iRow][iCol] +=
  773. m[iMid][iRow]*m[iMid][iCol];
  774. }
  775. if ( kP[iRow][iCol] > fPmax )
  776. fPmax = kP[iRow][iCol];
  777. }
  778. }
  779. float fInvPmax = 1.0f/fPmax;
  780. for (iRow = 0; iRow < 3; iRow++)
  781. {
  782. for (iCol = 0; iCol < 3; iCol++)
  783. kP[iRow][iCol] *= fInvPmax;
  784. }
  785. float afCoeff[3];
  786. afCoeff[0] = -(kP[0][0]*(kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]) +
  787. kP[0][1]*(kP[2][0]*kP[1][2]-kP[1][0]*kP[2][2]) +
  788. kP[0][2]*(kP[1][0]*kP[2][1]-kP[2][0]*kP[1][1]));
  789. afCoeff[1] = kP[0][0]*kP[1][1]-kP[0][1]*kP[1][0] +
  790. kP[0][0]*kP[2][2]-kP[0][2]*kP[2][0] +
  791. kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1];
  792. afCoeff[2] = -(kP[0][0]+kP[1][1]+kP[2][2]);
  793. float fRoot = MaxCubicRoot(afCoeff);
  794. float fNorm = Math::Sqrt(fPmax*fRoot);
  795. return fNorm;
  796. }
  797. //-----------------------------------------------------------------------
  798. void Matrix3::ToAxisAngle (Vector3& rkAxis, Radian& rfRadians) const
  799. {
  800. // Let (x,y,z) be the unit-length axis and let A be an angle of rotation.
  801. // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where
  802. // I is the identity and
  803. //
  804. // +- -+
  805. // P = | 0 -z +y |
  806. // | +z 0 -x |
  807. // | -y +x 0 |
  808. // +- -+
  809. //
  810. // If A > 0, R represents a counterclockwise rotation about the axis in
  811. // the sense of looking from the tip of the axis vector towards the
  812. // origin. Some algebra will show that
  813. //
  814. // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P
  815. //
  816. // In the event that A = pi, R-R^t = 0 which prevents us from extracting
  817. // the axis through P. Instead note that R = I+2*P^2 when A = pi, so
  818. // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and
  819. // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi,
  820. // it does not matter which sign you choose on the square roots.
  821. float fTrace = m[0][0] + m[1][1] + m[2][2];
  822. float fCos = 0.5f*(fTrace-1.0f);
  823. rfRadians = Math::ACos(fCos); // in [0,PI]
  824. if ( rfRadians > Radian(0.0) )
  825. {
  826. if ( rfRadians < Radian(Math::PI) )
  827. {
  828. rkAxis.x = m[2][1]-m[1][2];
  829. rkAxis.y = m[0][2]-m[2][0];
  830. rkAxis.z = m[1][0]-m[0][1];
  831. rkAxis.normalise();
  832. }
  833. else
  834. {
  835. // angle is PI
  836. float fHalfInverse;
  837. if ( m[0][0] >= m[1][1] )
  838. {
  839. // r00 >= r11
  840. if ( m[0][0] >= m[2][2] )
  841. {
  842. // r00 is maximum diagonal term
  843. rkAxis.x = 0.5f*Math::Sqrt(m[0][0] -
  844. m[1][1] - m[2][2] + 1.0f);
  845. fHalfInverse = 0.5f/rkAxis.x;
  846. rkAxis.y = fHalfInverse*m[0][1];
  847. rkAxis.z = fHalfInverse*m[0][2];
  848. }
  849. else
  850. {
  851. // r22 is maximum diagonal term
  852. rkAxis.z = 0.5f*Math::Sqrt(m[2][2] -
  853. m[0][0] - m[1][1] + 1.0f);
  854. fHalfInverse = 0.5f/rkAxis.z;
  855. rkAxis.x = fHalfInverse*m[0][2];
  856. rkAxis.y = fHalfInverse*m[1][2];
  857. }
  858. }
  859. else
  860. {
  861. // r11 > r00
  862. if ( m[1][1] >= m[2][2] )
  863. {
  864. // r11 is maximum diagonal term
  865. rkAxis.y = 0.5f*Math::Sqrt(m[1][1] -
  866. m[0][0] - m[2][2] + 1.0f);
  867. fHalfInverse = 0.5f/rkAxis.y;
  868. rkAxis.x = fHalfInverse*m[0][1];
  869. rkAxis.z = fHalfInverse*m[1][2];
  870. }
  871. else
  872. {
  873. // r22 is maximum diagonal term
  874. rkAxis.z = 0.5f*Math::Sqrt(m[2][2] -
  875. m[0][0] - m[1][1] + 1.0f);
  876. fHalfInverse = 0.5f/rkAxis.z;
  877. rkAxis.x = fHalfInverse*m[0][2];
  878. rkAxis.y = fHalfInverse*m[1][2];
  879. }
  880. }
  881. }
  882. }
  883. else
  884. {
  885. // The angle is 0 and the matrix is the identity. Any axis will
  886. // work, so just use the x-axis.
  887. rkAxis.x = 1.0;
  888. rkAxis.y = 0.0;
  889. rkAxis.z = 0.0;
  890. }
  891. }
  892. //-----------------------------------------------------------------------
  893. void Matrix3::FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians)
  894. {
  895. float fCos = Math::Cos(fRadians);
  896. float fSin = Math::Sin(fRadians);
  897. float fOneMinusCos = 1.0f-fCos;
  898. float fX2 = rkAxis.x*rkAxis.x;
  899. float fY2 = rkAxis.y*rkAxis.y;
  900. float fZ2 = rkAxis.z*rkAxis.z;
  901. float fXYM = rkAxis.x*rkAxis.y*fOneMinusCos;
  902. float fXZM = rkAxis.x*rkAxis.z*fOneMinusCos;
  903. float fYZM = rkAxis.y*rkAxis.z*fOneMinusCos;
  904. float fXSin = rkAxis.x*fSin;
  905. float fYSin = rkAxis.y*fSin;
  906. float fZSin = rkAxis.z*fSin;
  907. m[0][0] = fX2*fOneMinusCos+fCos;
  908. m[0][1] = fXYM-fZSin;
  909. m[0][2] = fXZM+fYSin;
  910. m[1][0] = fXYM+fZSin;
  911. m[1][1] = fY2*fOneMinusCos+fCos;
  912. m[1][2] = fYZM-fXSin;
  913. m[2][0] = fXZM-fYSin;
  914. m[2][1] = fYZM+fXSin;
  915. m[2][2] = fZ2*fOneMinusCos+fCos;
  916. }
  917. //-----------------------------------------------------------------------
  918. bool Matrix3::ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
  919. Radian& rfRAngle) const
  920. {
  921. // rot = cy*cz -cy*sz sy
  922. // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
  923. // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
  924. rfPAngle = Radian(Math::ASin(m[0][2]));
  925. if ( rfPAngle < Radian(Math::HALF_PI) )
  926. {
  927. if ( rfPAngle > Radian(-Math::HALF_PI) )
  928. {
  929. rfYAngle = Math::ATan2(-m[1][2],m[2][2]);
  930. rfRAngle = Math::ATan2(-m[0][1],m[0][0]);
  931. return true;
  932. }
  933. else
  934. {
  935. // WARNING. Not a unique solution.
  936. Radian fRmY = Math::ATan2(m[1][0],m[1][1]);
  937. rfRAngle = Radian(0.0); // any angle works
  938. rfYAngle = rfRAngle - fRmY;
  939. return false;
  940. }
  941. }
  942. else
  943. {
  944. // WARNING. Not a unique solution.
  945. Radian fRpY = Math::ATan2(m[1][0],m[1][1]);
  946. rfRAngle = Radian(0.0); // any angle works
  947. rfYAngle = fRpY - rfRAngle;
  948. return false;
  949. }
  950. }
  951. //-----------------------------------------------------------------------
  952. bool Matrix3::ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
  953. Radian& rfRAngle) const
  954. {
  955. // rot = cy*cz -sz cz*sy
  956. // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz
  957. // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz
  958. rfPAngle = Math::ASin(-m[0][1]);
  959. if ( rfPAngle < Radian(Math::HALF_PI) )
  960. {
  961. if ( rfPAngle > Radian(-Math::HALF_PI) )
  962. {
  963. rfYAngle = Math::ATan2(m[2][1],m[1][1]);
  964. rfRAngle = Math::ATan2(m[0][2],m[0][0]);
  965. return true;
  966. }
  967. else
  968. {
  969. // WARNING. Not a unique solution.
  970. Radian fRmY = Math::ATan2(-m[2][0],m[2][2]);
  971. rfRAngle = Radian(0.0); // any angle works
  972. rfYAngle = rfRAngle - fRmY;
  973. return false;
  974. }
  975. }
  976. else
  977. {
  978. // WARNING. Not a unique solution.
  979. Radian fRpY = Math::ATan2(-m[2][0],m[2][2]);
  980. rfRAngle = Radian(0.0); // any angle works
  981. rfYAngle = fRpY - rfRAngle;
  982. return false;
  983. }
  984. }
  985. //-----------------------------------------------------------------------
  986. bool Matrix3::ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
  987. Radian& rfRAngle) const
  988. {
  989. // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy
  990. // cx*sz cx*cz -sx
  991. // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy
  992. rfPAngle = Math::ASin(-m[1][2]);
  993. if ( rfPAngle < Radian(Math::HALF_PI) )
  994. {
  995. if ( rfPAngle > Radian(-Math::HALF_PI) )
  996. {
  997. rfYAngle = Math::ATan2(m[0][2],m[2][2]);
  998. rfRAngle = Math::ATan2(m[1][0],m[1][1]);
  999. return true;
  1000. }
  1001. else
  1002. {
  1003. // WARNING. Not a unique solution.
  1004. Radian fRmY = Math::ATan2(-m[0][1],m[0][0]);
  1005. rfRAngle = Radian(0.0); // any angle works
  1006. rfYAngle = rfRAngle - fRmY;
  1007. return false;
  1008. }
  1009. }
  1010. else
  1011. {
  1012. // WARNING. Not a unique solution.
  1013. Radian fRpY = Math::ATan2(-m[0][1],m[0][0]);
  1014. rfRAngle = Radian(0.0); // any angle works
  1015. rfYAngle = fRpY - rfRAngle;
  1016. return false;
  1017. }
  1018. }
  1019. //-----------------------------------------------------------------------
  1020. bool Matrix3::ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
  1021. Radian& rfRAngle) const
  1022. {
  1023. // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz
  1024. // sz cx*cz -cz*sx
  1025. // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz
  1026. rfPAngle = Math::ASin(m[1][0]);
  1027. if ( rfPAngle < Radian(Math::HALF_PI) )
  1028. {
  1029. if ( rfPAngle > Radian(-Math::HALF_PI) )
  1030. {
  1031. rfYAngle = Math::ATan2(-m[2][0],m[0][0]);
  1032. rfRAngle = Math::ATan2(-m[1][2],m[1][1]);
  1033. return true;
  1034. }
  1035. else
  1036. {
  1037. // WARNING. Not a unique solution.
  1038. Radian fRmY = Math::ATan2(m[2][1],m[2][2]);
  1039. rfRAngle = Radian(0.0); // any angle works
  1040. rfYAngle = rfRAngle - fRmY;
  1041. return false;
  1042. }
  1043. }
  1044. else
  1045. {
  1046. // WARNING. Not a unique solution.
  1047. Radian fRpY = Math::ATan2(m[2][1],m[2][2]);
  1048. rfRAngle = Radian(0.0); // any angle works
  1049. rfYAngle = fRpY - rfRAngle;
  1050. return false;
  1051. }
  1052. }
  1053. //-----------------------------------------------------------------------
  1054. bool Matrix3::ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
  1055. Radian& rfRAngle) const
  1056. {
  1057. // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz
  1058. // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz
  1059. // -cx*sy sx cx*cy
  1060. rfPAngle = Math::ASin(m[2][1]);
  1061. if ( rfPAngle < Radian(Math::HALF_PI) )
  1062. {
  1063. if ( rfPAngle > Radian(-Math::HALF_PI) )
  1064. {
  1065. rfYAngle = Math::ATan2(-m[0][1],m[1][1]);
  1066. rfRAngle = Math::ATan2(-m[2][0],m[2][2]);
  1067. return true;
  1068. }
  1069. else
  1070. {
  1071. // WARNING. Not a unique solution.
  1072. Radian fRmY = Math::ATan2(m[0][2],m[0][0]);
  1073. rfRAngle = Radian(0.0); // any angle works
  1074. rfYAngle = rfRAngle - fRmY;
  1075. return false;
  1076. }
  1077. }
  1078. else
  1079. {
  1080. // WARNING. Not a unique solution.
  1081. Radian fRpY = Math::ATan2(m[0][2],m[0][0]);
  1082. rfRAngle = Radian(0.0); // any angle works
  1083. rfYAngle = fRpY - rfRAngle;
  1084. return false;
  1085. }
  1086. }
  1087. //-----------------------------------------------------------------------
  1088. bool Matrix3::ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
  1089. Radian& rfRAngle) const
  1090. {
  1091. // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz
  1092. // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
  1093. // -sy cy*sx cx*cy
  1094. rfPAngle = Math::ASin(-m[2][0]);
  1095. if ( rfPAngle < Radian(Math::HALF_PI) )
  1096. {
  1097. if ( rfPAngle > Radian(-Math::HALF_PI) )
  1098. {
  1099. rfYAngle = Math::ATan2(m[1][0],m[0][0]);
  1100. rfRAngle = Math::ATan2(m[2][1],m[2][2]);
  1101. return true;
  1102. }
  1103. else
  1104. {
  1105. // WARNING. Not a unique solution.
  1106. Radian fRmY = Math::ATan2(-m[0][1],m[0][2]);
  1107. rfRAngle = Radian(0.0); // any angle works
  1108. rfYAngle = rfRAngle - fRmY;
  1109. return false;
  1110. }
  1111. }
  1112. else
  1113. {
  1114. // WARNING. Not a unique solution.
  1115. Radian fRpY = Math::ATan2(-m[0][1],m[0][2]);
  1116. rfRAngle = Radian(0.0); // any angle works
  1117. rfYAngle = fRpY - rfRAngle;
  1118. return false;
  1119. }
  1120. }
  1121. //-----------------------------------------------------------------------
  1122. void Matrix3::FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle,
  1123. const Radian& fRAngle)
  1124. {
  1125. float fCos, fSin;
  1126. fCos = Math::Cos(fYAngle);
  1127. fSin = Math::Sin(fYAngle);
  1128. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1129. fCos = Math::Cos(fPAngle);
  1130. fSin = Math::Sin(fPAngle);
  1131. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1132. fCos = Math::Cos(fRAngle);
  1133. fSin = Math::Sin(fRAngle);
  1134. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1135. *this = kXMat*(kYMat*kZMat);
  1136. }
  1137. //-----------------------------------------------------------------------
  1138. void Matrix3::FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle,
  1139. const Radian& fRAngle)
  1140. {
  1141. float fCos, fSin;
  1142. fCos = Math::Cos(fYAngle);
  1143. fSin = Math::Sin(fYAngle);
  1144. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1145. fCos = Math::Cos(fPAngle);
  1146. fSin = Math::Sin(fPAngle);
  1147. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1148. fCos = Math::Cos(fRAngle);
  1149. fSin = Math::Sin(fRAngle);
  1150. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1151. *this = kXMat*(kZMat*kYMat);
  1152. }
  1153. //-----------------------------------------------------------------------
  1154. void Matrix3::FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle,
  1155. const Radian& fRAngle)
  1156. {
  1157. float fCos, fSin;
  1158. fCos = Math::Cos(fYAngle);
  1159. fSin = Math::Sin(fYAngle);
  1160. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1161. fCos = Math::Cos(fPAngle);
  1162. fSin = Math::Sin(fPAngle);
  1163. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1164. fCos = Math::Cos(fRAngle);
  1165. fSin = Math::Sin(fRAngle);
  1166. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1167. *this = kYMat*(kXMat*kZMat);
  1168. }
  1169. //-----------------------------------------------------------------------
  1170. void Matrix3::FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle,
  1171. const Radian& fRAngle)
  1172. {
  1173. float fCos, fSin;
  1174. fCos = Math::Cos(fYAngle);
  1175. fSin = Math::Sin(fYAngle);
  1176. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1177. fCos = Math::Cos(fPAngle);
  1178. fSin = Math::Sin(fPAngle);
  1179. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1180. fCos = Math::Cos(fRAngle);
  1181. fSin = Math::Sin(fRAngle);
  1182. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1183. *this = kYMat*(kZMat*kXMat);
  1184. }
  1185. //-----------------------------------------------------------------------
  1186. void Matrix3::FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle,
  1187. const Radian& fRAngle)
  1188. {
  1189. float fCos, fSin;
  1190. fCos = Math::Cos(fYAngle);
  1191. fSin = Math::Sin(fYAngle);
  1192. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1193. fCos = Math::Cos(fPAngle);
  1194. fSin = Math::Sin(fPAngle);
  1195. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1196. fCos = Math::Cos(fRAngle);
  1197. fSin = Math::Sin(fRAngle);
  1198. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1199. *this = kZMat*(kXMat*kYMat);
  1200. }
  1201. //-----------------------------------------------------------------------
  1202. void Matrix3::FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle,
  1203. const Radian& fRAngle)
  1204. {
  1205. float fCos, fSin;
  1206. fCos = Math::Cos(fYAngle);
  1207. fSin = Math::Sin(fYAngle);
  1208. Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
  1209. fCos = Math::Cos(fPAngle);
  1210. fSin = Math::Sin(fPAngle);
  1211. Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
  1212. fCos = Math::Cos(fRAngle);
  1213. fSin = Math::Sin(fRAngle);
  1214. Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
  1215. *this = kZMat*(kYMat*kXMat);
  1216. }
  1217. //-----------------------------------------------------------------------
  1218. void Matrix3::Tridiagonal (float afDiag[3], float afSubDiag[3])
  1219. {
  1220. // Householder reduction T = Q^t M Q
  1221. // Input:
  1222. // mat, symmetric 3x3 matrix M
  1223. // Output:
  1224. // mat, orthogonal matrix Q
  1225. // diag, diagonal entries of T
  1226. // subd, subdiagonal entries of T (T is symmetric)
  1227. float fA = m[0][0];
  1228. float fB = m[0][1];
  1229. float fC = m[0][2];
  1230. float fD = m[1][1];
  1231. float fE = m[1][2];
  1232. float fF = m[2][2];
  1233. afDiag[0] = fA;
  1234. afSubDiag[2] = 0.0;
  1235. if ( Math::Abs(fC) >= EPSILON )
  1236. {
  1237. float fLength = Math::Sqrt(fB*fB+fC*fC);
  1238. float fInvLength = 1.0f/fLength;
  1239. fB *= fInvLength;
  1240. fC *= fInvLength;
  1241. float fQ = 2.0f*fB*fE+fC*(fF-fD);
  1242. afDiag[1] = fD+fC*fQ;
  1243. afDiag[2] = fF-fC*fQ;
  1244. afSubDiag[0] = fLength;
  1245. afSubDiag[1] = fE-fB*fQ;
  1246. m[0][0] = 1.0;
  1247. m[0][1] = 0.0;
  1248. m[0][2] = 0.0;
  1249. m[1][0] = 0.0;
  1250. m[1][1] = fB;
  1251. m[1][2] = fC;
  1252. m[2][0] = 0.0;
  1253. m[2][1] = fC;
  1254. m[2][2] = -fB;
  1255. }
  1256. else
  1257. {
  1258. afDiag[1] = fD;
  1259. afDiag[2] = fF;
  1260. afSubDiag[0] = fB;
  1261. afSubDiag[1] = fE;
  1262. m[0][0] = 1.0;
  1263. m[0][1] = 0.0;
  1264. m[0][2] = 0.0;
  1265. m[1][0] = 0.0;
  1266. m[1][1] = 1.0;
  1267. m[1][2] = 0.0;
  1268. m[2][0] = 0.0;
  1269. m[2][1] = 0.0;
  1270. m[2][2] = 1.0;
  1271. }
  1272. }
  1273. //-----------------------------------------------------------------------
  1274. bool Matrix3::QLAlgorithm (float afDiag[3], float afSubDiag[3])
  1275. {
  1276. // QL iteration with implicit shifting to reduce matrix from tridiagonal
  1277. // to diagonal
  1278. for (int i0 = 0; i0 < 3; i0++)
  1279. {
  1280. const unsigned int iMaxIter = 32;
  1281. unsigned int iIter;
  1282. for (iIter = 0; iIter < iMaxIter; iIter++)
  1283. {
  1284. int i1;
  1285. for (i1 = i0; i1 <= 1; i1++)
  1286. {
  1287. float fSum = Math::Abs(afDiag[i1]) +
  1288. Math::Abs(afDiag[i1+1]);
  1289. if ( Math::Abs(afSubDiag[i1]) + fSum == fSum )
  1290. break;
  1291. }
  1292. if ( i1 == i0 )
  1293. break;
  1294. float fTmp0 = (afDiag[i0+1]-afDiag[i0])/(2.0f*afSubDiag[i0]);
  1295. float fTmp1 = Math::Sqrt(fTmp0*fTmp0+1.0f);
  1296. if ( fTmp0 < 0.0 )
  1297. fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1);
  1298. else
  1299. fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1);
  1300. float fSin = 1.0;
  1301. float fCos = 1.0;
  1302. float fTmp2 = 0.0;
  1303. for (int i2 = i1-1; i2 >= i0; i2--)
  1304. {
  1305. float fTmp3 = fSin*afSubDiag[i2];
  1306. float fTmp4 = fCos*afSubDiag[i2];
  1307. if ( Math::Abs(fTmp3) >= Math::Abs(fTmp0) )
  1308. {
  1309. fCos = fTmp0/fTmp3;
  1310. fTmp1 = Math::Sqrt(fCos*fCos+1.0f);
  1311. afSubDiag[i2+1] = fTmp3*fTmp1;
  1312. fSin = 1.0f/fTmp1;
  1313. fCos *= fSin;
  1314. }
  1315. else
  1316. {
  1317. fSin = fTmp3/fTmp0;
  1318. fTmp1 = Math::Sqrt(fSin*fSin+1.0f);
  1319. afSubDiag[i2+1] = fTmp0*fTmp1;
  1320. fCos = 1.0f/fTmp1;
  1321. fSin *= fCos;
  1322. }
  1323. fTmp0 = afDiag[i2+1]-fTmp2;
  1324. fTmp1 = (afDiag[i2]-fTmp0)*fSin+2.0f*fTmp4*fCos;
  1325. fTmp2 = fSin*fTmp1;
  1326. afDiag[i2+1] = fTmp0+fTmp2;
  1327. fTmp0 = fCos*fTmp1-fTmp4;
  1328. for (int iRow = 0; iRow < 3; iRow++)
  1329. {
  1330. fTmp3 = m[iRow][i2+1];
  1331. m[iRow][i2+1] = fSin*m[iRow][i2] +
  1332. fCos*fTmp3;
  1333. m[iRow][i2] = fCos*m[iRow][i2] -
  1334. fSin*fTmp3;
  1335. }
  1336. }
  1337. afDiag[i0] -= fTmp2;
  1338. afSubDiag[i0] = fTmp0;
  1339. afSubDiag[i1] = 0.0;
  1340. }
  1341. if ( iIter == iMaxIter )
  1342. {
  1343. // should not get here under normal circumstances
  1344. return false;
  1345. }
  1346. }
  1347. return true;
  1348. }
  1349. //-----------------------------------------------------------------------
  1350. void Matrix3::EigenSolveSymmetric (float afEigenvalue[3],
  1351. Vector3 akEigenvector[3]) const
  1352. {
  1353. Matrix3 kMatrix = *this;
  1354. float afSubDiag[3];
  1355. kMatrix.Tridiagonal(afEigenvalue,afSubDiag);
  1356. kMatrix.QLAlgorithm(afEigenvalue,afSubDiag);
  1357. for (size_t i = 0; i < 3; i++)
  1358. {
  1359. akEigenvector[i][0] = kMatrix[0][i];
  1360. akEigenvector[i][1] = kMatrix[1][i];
  1361. akEigenvector[i][2] = kMatrix[2][i];
  1362. }
  1363. // make eigenvectors form a right--handed system
  1364. Vector3 kCross = akEigenvector[1].crossProduct(akEigenvector[2]);
  1365. float fDet = akEigenvector[0].dotProduct(kCross);
  1366. if ( fDet < 0.0 )
  1367. {
  1368. akEigenvector[2][0] = - akEigenvector[2][0];
  1369. akEigenvector[2][1] = - akEigenvector[2][1];
  1370. akEigenvector[2][2] = - akEigenvector[2][2];
  1371. }
  1372. }
  1373. //-----------------------------------------------------------------------
  1374. void Matrix3::TensorProduct (const Vector3& rkU, const Vector3& rkV,
  1375. Matrix3& rkProduct)
  1376. {
  1377. for (size_t iRow = 0; iRow < 3; iRow++)
  1378. {
  1379. for (size_t iCol = 0; iCol < 3; iCol++)
  1380. rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol];
  1381. }
  1382. }
  1383. //-----------------------------------------------------------------------
  1384. }