BsCoreObjectManager.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "CoreThread/BsCoreObjectManager.h"
  4. #include "CoreThread/BsCoreObject.h"
  5. #include "CoreThread/BsCoreObjectCore.h"
  6. #include "Error/BsException.h"
  7. #include "Math/BsMath.h"
  8. #include "CoreThread/BsCoreThread.h"
  9. namespace bs
  10. {
  11. CoreObjectManager::CoreObjectManager()
  12. :mNextAvailableID(1)
  13. {
  14. }
  15. CoreObjectManager::~CoreObjectManager()
  16. {
  17. #if BS_DEBUG_MODE
  18. Lock lock(mObjectsMutex);
  19. if(mObjects.size() > 0)
  20. {
  21. // All objects MUST be destroyed at this point, otherwise there might be memory corruption.
  22. // (Reason: This is called on application shutdown and at that point we also unload any dynamic libraries,
  23. // which will invalidate any pointers to objects created from those libraries. Therefore we require of the user to
  24. // clean up all objects manually before shutting down the application).
  25. BS_EXCEPT(InternalErrorException, "Core object manager shut down, but not all objects were released. Application must release ALL " \
  26. "engine objects before shutdown.");
  27. }
  28. #endif
  29. }
  30. UINT64 CoreObjectManager::generateId()
  31. {
  32. Lock lock(mObjectsMutex);
  33. return mNextAvailableID++;
  34. }
  35. void CoreObjectManager::registerObject(CoreObject* object)
  36. {
  37. Lock lock(mObjectsMutex);
  38. UINT64 objId = object->getInternalID();
  39. mObjects[objId] = object;
  40. mDirtyObjects[objId] = { object, -1 };
  41. }
  42. void CoreObjectManager::unregisterObject(CoreObject* object)
  43. {
  44. assert(object != nullptr);
  45. UINT64 internalId = object->getInternalID();
  46. // If dirty, we generate sync data before it is destroyed
  47. {
  48. Lock lock(mObjectsMutex);
  49. bool isDirty = object->isCoreDirty() || (mDirtyObjects.find(internalId) != mDirtyObjects.end());
  50. if (isDirty)
  51. {
  52. SPtr<ct::CoreObject> coreObject = object->getCore();
  53. if (coreObject != nullptr)
  54. {
  55. CoreSyncData objSyncData = object->syncToCore(gCoreThread().getFrameAlloc());
  56. mDestroyedSyncData.push_back(CoreStoredSyncObjData(coreObject, internalId, objSyncData));
  57. DirtyObjectData& dirtyObjData = mDirtyObjects[internalId];
  58. dirtyObjData.syncDataId = (INT32)mDestroyedSyncData.size() - 1;
  59. dirtyObjData.object = nullptr;
  60. }
  61. else
  62. {
  63. DirtyObjectData& dirtyObjData = mDirtyObjects[internalId];
  64. dirtyObjData.syncDataId = -1;
  65. dirtyObjData.object = nullptr;
  66. }
  67. }
  68. mObjects.erase(internalId);
  69. }
  70. updateDependencies(object, nullptr);
  71. // Clear dependencies from dependants
  72. {
  73. Lock lock(mObjectsMutex);
  74. auto iterFind = mDependants.find(internalId);
  75. if (iterFind != mDependants.end())
  76. {
  77. Vector<CoreObject*>& dependants = iterFind->second;
  78. for (auto& entry : dependants)
  79. {
  80. auto iterFind2 = mDependencies.find(entry->getInternalID());
  81. if (iterFind2 != mDependencies.end())
  82. {
  83. Vector<CoreObject*>& dependencies = iterFind2->second;
  84. auto iterFind3 = std::find(dependencies.begin(), dependencies.end(), object);
  85. if (iterFind3 != dependencies.end())
  86. dependencies.erase(iterFind3);
  87. if (dependencies.size() == 0)
  88. mDependencies.erase(iterFind2);
  89. }
  90. }
  91. mDependants.erase(iterFind);
  92. }
  93. mDependencies.erase(internalId);
  94. }
  95. }
  96. void CoreObjectManager::notifyCoreDirty(CoreObject* object)
  97. {
  98. UINT64 id = object->getInternalID();
  99. Lock lock(mObjectsMutex);
  100. mDirtyObjects[id] = { object, -1 };
  101. }
  102. void CoreObjectManager::notifyDependenciesDirty(CoreObject* object)
  103. {
  104. Vector<CoreObject*> dependencies;
  105. object->getCoreDependencies(dependencies);
  106. updateDependencies(object, &dependencies);
  107. }
  108. void CoreObjectManager::updateDependencies(CoreObject* object, Vector<CoreObject*>* dependencies)
  109. {
  110. UINT64 id = object->getInternalID();
  111. bs_frame_mark();
  112. {
  113. FrameVector<CoreObject*> toRemove;
  114. FrameVector<CoreObject*> toAdd;
  115. Lock lock(mObjectsMutex);
  116. // Add dependencies and clear old dependencies from dependants
  117. {
  118. if (dependencies != nullptr)
  119. std::sort(dependencies->begin(), dependencies->end());
  120. auto iterFind = mDependencies.find(id);
  121. if (iterFind != mDependencies.end())
  122. {
  123. const Vector<CoreObject*>& oldDependencies = iterFind->second;
  124. if (dependencies != nullptr)
  125. {
  126. std::set_difference(oldDependencies.begin(), oldDependencies.end(),
  127. dependencies->begin(), dependencies->end(), std::inserter(toRemove, toRemove.begin()));
  128. std::set_difference(dependencies->begin(), dependencies->end(),
  129. oldDependencies.begin(), oldDependencies.end(), std::inserter(toAdd, toAdd.begin()));
  130. }
  131. else
  132. {
  133. for (auto& dependency : oldDependencies)
  134. toRemove.push_back(dependency);
  135. }
  136. for (auto& dependency : toRemove)
  137. {
  138. UINT64 dependencyId = dependency->getInternalID();
  139. auto iterFind2 = mDependants.find(dependencyId);
  140. if (iterFind2 != mDependants.end())
  141. {
  142. Vector<CoreObject*>& dependants = iterFind2->second;
  143. auto findIter3 = std::find(dependants.begin(), dependants.end(), object);
  144. dependants.erase(findIter3);
  145. if (dependants.size() == 0)
  146. mDependants.erase(iterFind2);
  147. }
  148. }
  149. if (dependencies != nullptr && dependencies->size() > 0)
  150. mDependencies[id] = *dependencies;
  151. else
  152. mDependencies.erase(id);
  153. }
  154. else
  155. {
  156. if (dependencies != nullptr && dependencies->size() > 0)
  157. {
  158. for (auto& dependency : *dependencies)
  159. toAdd.push_back(dependency);
  160. mDependencies[id] = *dependencies;
  161. }
  162. }
  163. }
  164. // Register dependants
  165. {
  166. for (auto& dependency : toAdd)
  167. {
  168. UINT64 dependencyId = dependency->getInternalID();
  169. Vector<CoreObject*>& dependants = mDependants[dependencyId];
  170. dependants.push_back(object);
  171. }
  172. }
  173. }
  174. bs_frame_clear();
  175. }
  176. void CoreObjectManager::syncToCore()
  177. {
  178. syncDownload(gCoreThread().getFrameAlloc());
  179. gCoreThread().queueCommand(std::bind(&CoreObjectManager::syncUpload, this));
  180. }
  181. void CoreObjectManager::syncToCore(CoreObject* object)
  182. {
  183. struct IndividualCoreSyncData
  184. {
  185. SPtr<ct::CoreObject> destination;
  186. CoreSyncData syncData;
  187. FrameAlloc* allocator;
  188. };
  189. Lock lock(mObjectsMutex);
  190. FrameAlloc* allocator = gCoreThread().getFrameAlloc();
  191. Vector<IndividualCoreSyncData> syncData;
  192. std::function<void(CoreObject*)> syncObject = [&](CoreObject* curObj)
  193. {
  194. if (!curObj->isCoreDirty())
  195. return; // We already processed it as some other object's dependency
  196. // Sync dependencies before dependants
  197. // Note: I don't check for recursion. Possible infinite loop if two objects
  198. // are dependent on one another.
  199. UINT64 id = curObj->getInternalID();
  200. auto iterFind = mDependencies.find(id);
  201. if (iterFind != mDependencies.end())
  202. {
  203. const Vector<CoreObject*>& dependencies = iterFind->second;
  204. for (auto& dependency : dependencies)
  205. syncObject(dependency);
  206. }
  207. SPtr<ct::CoreObject> objectCore = curObj->getCore();
  208. if (objectCore == nullptr)
  209. {
  210. curObj->markCoreClean();
  211. mDirtyObjects.erase(id);
  212. return;
  213. }
  214. syncData.push_back(IndividualCoreSyncData());
  215. IndividualCoreSyncData& data = syncData.back();
  216. data.allocator = allocator;
  217. data.destination = objectCore;
  218. data.syncData = curObj->syncToCore(allocator);
  219. curObj->markCoreClean();
  220. mDirtyObjects.erase(id);
  221. };
  222. syncObject(object);
  223. std::function<void(const Vector<IndividualCoreSyncData>&)> callback =
  224. [](const Vector<IndividualCoreSyncData>& data)
  225. {
  226. // Traverse in reverse to sync dependencies before dependants
  227. for (auto riter = data.rbegin(); riter != data.rend(); ++riter)
  228. {
  229. const IndividualCoreSyncData& entry = *riter;
  230. entry.destination->syncToCore(entry.syncData);
  231. UINT8* dataPtr = entry.syncData.getBuffer();
  232. if (dataPtr != nullptr)
  233. entry.allocator->free(dataPtr);
  234. }
  235. };
  236. if (syncData.size() > 0)
  237. gCoreThread().queueCommand(std::bind(callback, syncData));
  238. }
  239. void CoreObjectManager::syncDownload(FrameAlloc* allocator)
  240. {
  241. Lock lock(mObjectsMutex);
  242. mCoreSyncData.push_back(CoreStoredSyncData());
  243. CoreStoredSyncData& syncData = mCoreSyncData.back();
  244. syncData.alloc = allocator;
  245. // Add all objects dependant on the dirty objects
  246. bs_frame_mark();
  247. {
  248. FrameSet<CoreObject*> dirtyDependants;
  249. for (auto& objectData : mDirtyObjects)
  250. {
  251. auto iterFind = mDependants.find(objectData.first);
  252. if (iterFind != mDependants.end())
  253. {
  254. const Vector<CoreObject*>& dependants = iterFind->second;
  255. for (auto& dependant : dependants)
  256. {
  257. if (!dependant->isCoreDirty())
  258. dirtyDependants.insert(dependant);
  259. // Note: This tells the object it was marked dirty due to a dependency, but it doesn't tell it
  260. // due to which one. Eventually it might be nice to have that information as well.
  261. dependant->mCoreDirtyFlags |= 0x80000000;
  262. }
  263. }
  264. }
  265. for (auto& dirtyDependant : dirtyDependants)
  266. {
  267. UINT64 id = dirtyDependant->getInternalID();
  268. mDirtyObjects[id] = { dirtyDependant, -1 };
  269. }
  270. }
  271. bs_frame_clear();
  272. // Order in which objects are recursed in matters, ones with lower ID will have been created before
  273. // ones with higher ones and should be updated first.
  274. for (auto& objectData : mDirtyObjects)
  275. {
  276. std::function<void(CoreObject*)> syncObject = [&](CoreObject* curObj)
  277. {
  278. if (!curObj->isCoreDirty())
  279. return; // We already processed it as some other object's dependency
  280. // Sync dependencies before dependants
  281. // Note: I don't check for recursion. Possible infinite loop if two objects
  282. // are dependent on one another.
  283. UINT64 id = curObj->getInternalID();
  284. auto iterFind = mDependencies.find(id);
  285. if (iterFind != mDependencies.end())
  286. {
  287. const Vector<CoreObject*>& dependencies = iterFind->second;
  288. for (auto& dependency : dependencies)
  289. syncObject(dependency);
  290. }
  291. SPtr<ct::CoreObject> objectCore = curObj->getCore();
  292. if (objectCore == nullptr)
  293. {
  294. curObj->markCoreClean();
  295. return;
  296. }
  297. CoreSyncData objSyncData = curObj->syncToCore(allocator);
  298. curObj->markCoreClean();
  299. syncData.entries.push_back(CoreStoredSyncObjData(objectCore,
  300. curObj->getInternalID(), objSyncData));
  301. };
  302. CoreObject* object = objectData.second.object;
  303. if (object != nullptr)
  304. syncObject(object);
  305. else
  306. {
  307. // Object was destroyed but we still need to sync its modifications before it was destroyed
  308. if (objectData.second.syncDataId != -1)
  309. syncData.entries.push_back(mDestroyedSyncData[objectData.second.syncDataId]);
  310. }
  311. }
  312. mDirtyObjects.clear();
  313. mDestroyedSyncData.clear();
  314. }
  315. void CoreObjectManager::syncUpload()
  316. {
  317. Lock lock(mObjectsMutex);
  318. if (mCoreSyncData.size() == 0)
  319. return;
  320. CoreStoredSyncData& syncData = mCoreSyncData.front();
  321. for (auto& objSyncData : syncData.entries)
  322. {
  323. SPtr<ct::CoreObject> destinationObj = objSyncData.destinationObj;
  324. if (destinationObj != nullptr)
  325. destinationObj->syncToCore(objSyncData.syncData);
  326. UINT8* data = objSyncData.syncData.getBuffer();
  327. if (data != nullptr)
  328. syncData.alloc->free(data);
  329. }
  330. syncData.entries.clear();
  331. mCoreSyncData.pop_front();
  332. }
  333. }