TiledDeferredImageBasedLighting.bsl 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params : register(b0)
  18. {
  19. uint2 gFramebufferSize;
  20. }
  21. #if MSAA_COUNT > 1
  22. Texture2DMS<float4> gInColor;
  23. RWBuffer<float4> gOutput;
  24. Texture2D gMSAACoverage;
  25. uint getLinearAddress(uint2 coord, uint sampleIndex)
  26. {
  27. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  28. }
  29. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  30. {
  31. uint idx = getLinearAddress(coord, sampleIndex);
  32. gOutput[idx] = color;
  33. }
  34. #else
  35. Texture2D<float4> gInColor;
  36. RWTexture2D<float4> gOutput;
  37. #endif
  38. groupshared uint sTileMinZ;
  39. groupshared uint sTileMaxZ;
  40. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  41. {
  42. // Note: To improve performance perhaps:
  43. // - Use halfZ (split depth range into two regions for better culling)
  44. // - Use parallel reduction instead of atomics
  45. uint sampleMinZ = 0x7F7FFFFF;
  46. uint sampleMaxZ = 0;
  47. #if MSAA_COUNT > 1
  48. [unroll]
  49. for(uint i = 0; i < MSAA_COUNT; ++i)
  50. {
  51. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  52. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  53. }
  54. #else
  55. sampleMinZ = asuint(-surfaceData[0].depth);
  56. sampleMaxZ = asuint(-surfaceData[0].depth);
  57. #endif
  58. // Set initial values
  59. if(threadIndex == 0)
  60. {
  61. sTileMinZ = 0x7F7FFFFF;
  62. sTileMaxZ = 0;
  63. }
  64. GroupMemoryBarrierWithGroupSync();
  65. // Determine minimum and maximum depth values for a tile
  66. InterlockedMin(sTileMinZ, sampleMinZ);
  67. InterlockedMax(sTileMaxZ, sampleMaxZ);
  68. GroupMemoryBarrierWithGroupSync();
  69. minTileZ = -asfloat(sTileMinZ);
  70. maxTileZ = -asfloat(sTileMaxZ);
  71. }
  72. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  73. {
  74. uint2 pixelPos = tileId * TILE_SIZE;
  75. // OpenGL uses lower left for window space origin
  76. #ifdef OPENGL
  77. pixelPos.y = gFramebufferSize.y - pixelPos.y;
  78. #endif
  79. // Convert thread XY coordinates to NDC coordinates
  80. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  81. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  82. float3 ndcMin;
  83. float3 ndcMax;
  84. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  85. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  86. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  87. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  88. float flipY = -sign(gMatProj[1][1]);
  89. ndcMin.y *= flipY;
  90. ndcMax.y *= flipY;
  91. ndcMin.z = convertToNDCZ(viewZMin);
  92. ndcMax.z = convertToNDCZ(viewZMax);
  93. float4 corner[8];
  94. // Far
  95. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  96. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  97. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  98. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  99. // Near
  100. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  101. corner[5] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMin.z, 1.0f));
  102. corner[6] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMin.z, 1.0f));
  103. corner[7] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMin.z, 1.0f));
  104. [unroll]
  105. for(uint i = 0; i < 8; ++i)
  106. corner[i].xy /= corner[i].w;
  107. // Flip min/max because min = closest to view plane and max = furthest from view plane
  108. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  109. float3 viewMin = float3(corner[0].xy, viewZMax);
  110. float3 viewMax = float3(corner[0].xy, viewZMin);
  111. [unroll]
  112. for(uint i = 1; i < 8; ++i)
  113. {
  114. viewMin.xy = min(viewMin.xy, corner[i].xy);
  115. viewMax.xy = max(viewMax.xy, corner[i].xy);
  116. }
  117. extent = (viewMax - viewMin) * 0.5f;
  118. center = viewMin + extent;
  119. }
  120. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  121. {
  122. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  123. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  124. }
  125. float4 getLighting(uint2 pixelPos, float2 uv, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  126. {
  127. // x, y are now in clip space, z, w are in view space
  128. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  129. // z, w eliminated (since they are already in view space)
  130. // Note: Multiply by depth should be avoided if using ortographic projection
  131. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  132. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  133. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  134. float3 V = normalize(gViewOrigin - worldPosition);
  135. float3 N = surfaceData.worldNormal.xyz;
  136. float3 R = 2 * dot(V, N) * N - V;
  137. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  138. float4 existingColor;
  139. #if MSAA_COUNT > 1
  140. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  141. #else
  142. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  143. #endif
  144. float ao = gAmbientOcclusionTex.SampleLevel(gAmbientOcclusionSamp, uv, 0.0f).r;
  145. float4 ssr = gSSRTex.SampleLevel(gSSRSamp, uv, 0.0f);
  146. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  147. float4 totalLighting = existingColor;
  148. totalLighting.rgb += imageBasedSpecular;
  149. return totalLighting;
  150. }
  151. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  152. groupshared uint sNumProbes;
  153. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  154. void csmain(
  155. uint3 groupId : SV_GroupID,
  156. uint3 groupThreadId : SV_GroupThreadID,
  157. uint3 dispatchThreadId : SV_DispatchThreadID)
  158. {
  159. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  160. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  161. // Get data for all samples
  162. SurfaceData surfaceData[MSAA_COUNT];
  163. #if MSAA_COUNT > 1
  164. [unroll]
  165. for(uint i = 0; i < MSAA_COUNT; ++i)
  166. surfaceData[i] = getGBufferData(pixelPos, i);
  167. #else
  168. surfaceData[0] = getGBufferData(pixelPos);
  169. #endif
  170. // Set initial values
  171. if(threadIndex == 0)
  172. sNumProbes = 0;
  173. // Determine per-pixel minimum and maximum depth values
  174. float minTileZ, maxTileZ;
  175. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  176. // Create AABB for the current tile
  177. float3 center, extent;
  178. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  179. // Find probes overlapping the tile
  180. for (uint i = threadIndex; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
  181. {
  182. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  183. float probeRadius = gReflectionProbes[i].radius;
  184. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  185. {
  186. uint idx;
  187. InterlockedAdd(sNumProbes, 1U, idx);
  188. gUnsortedProbeIndices[idx] = i;
  189. }
  190. }
  191. GroupMemoryBarrierWithGroupSync();
  192. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  193. const uint numThreads = TILE_SIZE * TILE_SIZE;
  194. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  195. {
  196. int idx = gUnsortedProbeIndices[i];
  197. uint smallerCount = 0;
  198. for (uint j = 0; j < sNumProbes; j++)
  199. {
  200. int otherIdx = gUnsortedProbeIndices[j];
  201. if (otherIdx < idx)
  202. smallerCount++;
  203. }
  204. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  205. }
  206. GroupMemoryBarrierWithGroupSync();
  207. // Generate world position
  208. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  209. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  210. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  211. // Ignore pixels out of valid range
  212. if (all(dispatchThreadId.xy < viewportMax))
  213. {
  214. #if MSAA_COUNT > 1
  215. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  216. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  217. writeBufferSample(pixelPos, 0, lighting);
  218. bool doPerSampleShading = coverage > 0.5f;
  219. if(doPerSampleShading)
  220. {
  221. [unroll]
  222. for(uint i = 1; i < MSAA_COUNT; ++i)
  223. {
  224. lighting = getLighting(pixelPos, screenUv, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  225. writeBufferSample(pixelPos, i, lighting);
  226. }
  227. }
  228. else // Splat same information to all samples
  229. {
  230. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  231. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  232. // so we need to resolve all samples. Consider getting around this issue somehow.
  233. [unroll]
  234. for(uint i = 1; i < MSAA_COUNT; ++i)
  235. writeBufferSample(pixelPos, i, lighting);
  236. }
  237. #else
  238. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  239. gOutput[pixelPos] = lighting;
  240. #endif
  241. }
  242. }
  243. };
  244. };