| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590 |
- #include "$ENGINE$\GBufferInput.bslinc"
- #include "$ENGINE$\PerCameraData.bslinc"
- #define USE_COMPUTE_INDICES
- #include "$ENGINE$\LightingCommon.bslinc"
- #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
- #include "$ENGINE$\ImageBasedLighting.bslinc"
- Technique
- : inherits("GBufferInput")
- : inherits("PerCameraData")
- : inherits("LightingCommon")
- : inherits("ReflectionCubemapCommon")
- : inherits("ImageBasedLighting") =
- {
- Language = "HLSL11";
-
- Pass =
- {
- Compute =
- {
- cbuffer Params : register(b0)
- {
- // Offsets at which specific light types begin in gLights buffer
- // Assumed directional lights start at 0
- // x - offset to point lights, y - offset to spot lights, z - total number of lights
- uint3 gLightOffsets;
- uint2 gFramebufferSize;
- }
-
- #if MSAA_COUNT > 1
- RWBuffer<float4> gOutput : register(u0);
-
- uint getLinearAddress(uint2 coord, uint sampleIndex)
- {
- return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
- }
-
- void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
- {
- uint idx = getLinearAddress(coord, sampleIndex);
- gOutput[idx] = color;
- }
- #else
- RWTexture2D<float4> gOutput : register(u0);
- #endif
-
- groupshared uint sTileMinZ;
- groupshared uint sTileMaxZ;
- groupshared uint sNumLightsPerType[2];
- groupshared uint sTotalNumLights;
- float4 getLighting(float2 clipSpacePos, SurfaceData surfaceData)
- {
- // x, y are now in clip space, z, w are in view space
- // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
- // z, w eliminated (since they are already in view space)
- // Note: Multiply by depth should be avoided if using ortographic projection
- float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
- float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
- float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
-
- uint4 lightOffsets;
- lightOffsets.x = gLightOffsets[0];
- lightOffsets.y = 0;
- lightOffsets.z = sNumLightsPerType[0];
- lightOffsets.w = sTotalNumLights;
-
- float3 V = normalize(gViewOrigin - worldPosition);
- float3 N = surfaceData.worldNormal.xyz;
- float3 R = 2 * dot(V, N) * N - V;
- float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
-
- return getDirectLighting(worldPosition, V, specR, surfaceData, lightOffsets);
- }
-
- [numthreads(TILE_SIZE, TILE_SIZE, 1)]
- void main(
- uint3 groupId : SV_GroupID,
- uint3 groupThreadId : SV_GroupThreadID,
- uint3 dispatchThreadId : SV_DispatchThreadID)
- {
- uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
- uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
-
- // Note: To improve performance perhaps:
- // - Use halfZ (split depth range into two regions for better culling)
- // - Use parallel reduction instead of atomics
- // - Use AABB instead of frustum (no false positives)
- // - Increase tile size to 32x32 to amortize the cost of AABB calc (2x if using halfZ)
-
- // Get data for all samples, and determine per-pixel minimum and maximum depth values
- SurfaceData surfaceData[MSAA_COUNT];
- uint sampleMinZ = 0x7F7FFFFF;
- uint sampleMaxZ = 0;
- #if MSAA_COUNT > 1
- [unroll]
- for(uint i = 0; i < MSAA_COUNT; ++i)
- {
- surfaceData[i] = getGBufferData(pixelPos, i);
-
- sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
- sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
- }
- #else
- surfaceData[0] = getGBufferData(pixelPos);
- sampleMinZ = asuint(-surfaceData[0].depth);
- sampleMaxZ = asuint(-surfaceData[0].depth);
- #endif
- // Set initial values
- if(threadIndex == 0)
- {
- sTileMinZ = 0x7F7FFFFF;
- sTileMaxZ = 0;
- sNumLightsPerType[0] = 0;
- sNumLightsPerType[1] = 0;
- sTotalNumLights = 0;
- }
-
- GroupMemoryBarrierWithGroupSync();
-
- // Determine minimum and maximum depth values for a tile
- InterlockedMin(sTileMinZ, sampleMinZ);
- InterlockedMax(sTileMaxZ, sampleMaxZ);
-
- GroupMemoryBarrierWithGroupSync();
-
- float minTileZ = asfloat(sTileMinZ);
- float maxTileZ = asfloat(sTileMaxZ);
-
- // Create a frustum for the current tile
- // First determine a scale of the tile compared to the viewport
- float2 tileScale = gViewportRectangle.zw * rcp(float2(TILE_SIZE, TILE_SIZE));
- // Now we need to use that scale to scale down the frustum.
- // Assume a projection matrix:
- // A, 0, C, 0
- // 0, B, D, 0
- // 0, 0, Q, QN
- // 0, 0, -1, 0
- //
- // Where A is = 2*n / (r - l)
- // and C = (r + l) / (r - l)
- //
- // Q & QN are used for Z value which we don't need to scale. B & D are equivalent for the
- // Y value, we'll only consider the X values (A & C) from now on.
- //
- // Both and A and C are inversely proportional to the size of the frustum (r - l). Larger scale mean that
- // tiles are that much smaller than the viewport. This means as our scale increases, (r - l) decreases,
- // which means A & C as a whole increase. Therefore:
- // A' = A * tileScale.x
- // C' = C * tileScale.x
-
- // Aside from scaling, we also need to offset the frustum to the center of the tile.
- // For this we calculate the bias value which we add to the C & D factors (which control
- // the offset in the projection matrix).
- float2 tileBias = tileScale - 1 - groupId.xy * 2;
- // This will yield a bias ranging from [-(tileScale - 1), tileScale - 1]. Every second bias is skipped as
- // corresponds to a point in-between two tiles, overlapping existing frustums.
-
- float At = gMatProj[0][0] * tileScale.x;
- float Ctt = gMatProj[0][2] * tileScale.x - tileBias.x;
-
- float Bt = gMatProj[1][1] * tileScale.y;
- float Dtt = gMatProj[1][2] * tileScale.y + tileBias.y;
-
- // Extract left/right/top/bottom frustum planes from scaled projection matrix
- // Note: Do this on the CPU? Since they're shared among all entries in a tile. Plus they don't change across frames.
- float4 frustumPlanes[6];
- frustumPlanes[0] = float4(At, 0.0f, gMatProj[3][2] + Ctt, 0.0f);
- frustumPlanes[1] = float4(-At, 0.0f, gMatProj[3][2] - Ctt, 0.0f);
- frustumPlanes[2] = float4(0.0f, -Bt, gMatProj[3][2] - Dtt, 0.0f);
- frustumPlanes[3] = float4(0.0f, Bt, gMatProj[3][2] + Dtt, 0.0f);
-
- // Normalize
- [unroll]
- for (uint i = 0; i < 4; ++i)
- frustumPlanes[i] *= rcp(length(frustumPlanes[i].xyz));
-
- // Generate near/far frustum planes
- // Note: d gets negated in plane equation, this is why its in opposite direction than it intuitively should be
- frustumPlanes[4] = float4(0.0f, 0.0f, -1.0f, -minTileZ);
- frustumPlanes[5] = float4(0.0f, 0.0f, 1.0f, maxTileZ);
-
- // Find radial & spot lights overlapping the tile
- for(uint type = 0; type < 2; type++)
- {
- uint lightOffset = threadIndex + gLightOffsets[type];
- uint lightsEnd = gLightOffsets[type + 1];
- for (uint i = lightOffset; i < lightsEnd && i < MAX_LIGHTS; i += TILE_SIZE)
- {
- float4 lightPosition = mul(gMatView, float4(gLights[i].position, 1.0f));
- float lightRadius = gLights[i].attRadius;
-
- // Note: The cull method can have false positives. In case of large light bounds and small tiles, it
- // can end up being quite a lot. Consider adding an extra heuristic to check a separating plane.
- bool lightInTile = true;
-
- // First check side planes as this will cull majority of the lights
- [unroll]
- for (uint j = 0; j < 4; ++j)
- {
- float dist = dot(frustumPlanes[j], lightPosition);
- lightInTile = lightInTile && (dist >= -lightRadius);
- }
- // Make sure to do an actual branch, since it's quite likely an entire warp will have the same value
- [branch]
- if (lightInTile)
- {
- bool inDepthRange = true;
-
- // Check near/far planes
- [unroll]
- for (uint j = 4; j < 6; ++j)
- {
- float dist = dot(frustumPlanes[j], lightPosition);
- inDepthRange = inDepthRange && (dist >= -lightRadius);
- }
-
- // In tile, add to branch
- [branch]
- if (inDepthRange)
- {
- InterlockedAdd(sNumLightsPerType[type], 1U);
-
- uint idx;
- InterlockedAdd(sTotalNumLights, 1U, idx);
- gLightIndices[idx] = i;
- }
- }
- }
- }
- GroupMemoryBarrierWithGroupSync();
- // Generate world position
- float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
- float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
-
- uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
- // Ignore pixels out of valid range
- if (all(dispatchThreadId.xy < viewportMax))
- {
- #if MSAA_COUNT > 1
- float4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
- writeBufferSample(pixelPos, 0, lighting);
- bool doPerSampleShading = needsPerSampleShading(surfaceData);
- if(doPerSampleShading)
- {
- [unroll]
- for(uint i = 1; i < MSAA_COUNT; ++i)
- {
- lighting = getLighting(clipSpacePos.xy, surfaceData[i]);
- writeBufferSample(pixelPos, i, lighting);
- }
- }
- else // Splat same information to all samples
- {
- [unroll]
- for(uint i = 1; i < MSAA_COUNT; ++i)
- writeBufferSample(pixelPos, i, lighting);
- }
-
- #else
- float4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
- gOutput[pixelPos] = lighting;
- #endif
- }
- }
- };
- };
- };
- Technique
- : inherits("SurfaceData")
- : inherits("PerCameraData")
- : inherits("LightingCommon") =
- {
- Language = "GLSL";
-
- Pass =
- {
- Compute =
- {
- // Arbitrary limit, increase if needed
- #define MAX_LIGHTS 512
-
- layout (local_size_x = TILE_SIZE, local_size_y = TILE_SIZE) in;
-
- #if MSAA_COUNT > 1
- layout(binding = 1) uniform sampler2DMS gGBufferATex;
- layout(binding = 2) uniform sampler2DMS gGBufferBTex;
- layout(binding = 3) uniform sampler2DMS gGBufferCTex;
- layout(binding = 4) uniform sampler2DMS gDepthBufferTex;
- #else
- layout(binding = 1) uniform sampler2D gGBufferATex;
- layout(binding = 2) uniform sampler2D gGBufferBTex;
- layout(binding = 3) uniform sampler2D gGBufferCTex;
- layout(binding = 4) uniform sampler2D gDepthBufferTex;
- #endif
-
- SurfaceData decodeGBuffer(vec4 GBufferAData, vec4 GBufferBData, vec2 GBufferCData, float deviceZ)
- {
- SurfaceData surfaceData;
-
- surfaceData.albedo.xyz = GBufferAData.xyz;
- surfaceData.albedo.w = 1.0f;
- surfaceData.worldNormal = GBufferBData * vec4(2, 2, 2, 1) - vec4(1, 1, 1, 0);
- surfaceData.worldNormal.xyz = normalize(surfaceData.worldNormal.xyz);
- surfaceData.depth = convertFromDeviceZ(deviceZ);
- surfaceData.roughness = GBufferCData.x;
- surfaceData.metalness = GBufferCData.y;
-
- return surfaceData;
- }
-
- #if MSAA_COUNT > 1
- layout(binding = 5, rgba16f) uniform image2DMS gOutput;
-
- bool needsPerSampleShading(SurfaceData samples[MSAA_COUNT])
- {
- vec3 albedo = samples[0].albedo.xyz;
- vec3 normal = samples[0].worldNormal.xyz;
- float depth = samples[0].depth;
- for(int i = 1; i < MSAA_COUNT; i++)
- {
- vec3 otherAlbedo = samples[i].albedo.xyz;
- vec3 otherNormal = samples[i].worldNormal.xyz;
- float otherDepth = samples[i].depth;
- if(abs(depth - otherDepth) > 0.1f || abs(dot(abs(normal - otherNormal), vec3(1, 1, 1))) > 0.1f || abs(dot(albedo - otherAlbedo, vec3(1, 1, 1))) > 0.1f)
- {
- return true;
- }
- }
-
- return false;
- }
-
- SurfaceData getGBufferData(ivec2 pixelPos, int sampleIndex)
- {
- vec4 GBufferAData = texelFetch(gGBufferATex, pixelPos, sampleIndex);
- vec4 GBufferBData = texelFetch(gGBufferBTex, pixelPos, sampleIndex);
- vec2 GBufferCData = texelFetch(gGBufferCTex, pixelPos, sampleIndex).rg;
- float deviceZ = texelFetch(gDepthBufferTex, pixelPos, sampleIndex).r;
-
- return decodeGBuffer(GBufferAData, GBufferBData, GBufferCData, deviceZ);
- }
-
- #else
-
- layout(binding = 5, rgba16f) uniform image2D gOutput;
-
- SurfaceData getGBufferData(ivec2 pixelPos)
- {
- vec4 GBufferAData = texelFetch(gGBufferATex, pixelPos, 0);
- vec4 GBufferBData = texelFetch(gGBufferBTex, pixelPos, 0);
- vec2 GBufferCData = texelFetch(gGBufferCTex, pixelPos, 0).rg;
- float deviceZ = texelFetch(gDepthBufferTex, pixelPos, 0).r;
-
- return decodeGBuffer(GBufferAData, GBufferBData, GBufferCData, deviceZ);
- }
-
- #endif
-
- layout(std430, binding = 6) readonly buffer gLights
- {
- LightData gLightsData[];
- };
- layout(binding = 7, std140) uniform Params
- {
- // Offsets at which specific light types begin in gLights buffer
- // Assumed directional lights start at 0
- // x - offset to point lights, y - offset to spot lights, z - total number of lights
- uvec3 gLightOffsets;
- uvec2 gFramebufferSize;
- };
-
- shared uint sTileMinZ;
- shared uint sTileMaxZ;
-
- shared uint sNumLightsPerType[2];
- shared uint sTotalNumLights;
- shared uint sLightIndices[MAX_LIGHTS];
-
- vec4 getLighting(vec2 clipSpacePos, SurfaceData surfaceData)
- {
- // x, y are now in clip space, z, w are in view space
- // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
- // z, w eliminated (since they are already in view space)
- // Note: Multiply by depth should be avoided if using ortographic projection
- vec4 mixedSpacePos = vec4(clipSpacePos.xy * -surfaceData.depth, surfaceData.depth, 1);
- vec4 worldPosition4D = gMatScreenToWorld * mixedSpacePos;
- vec3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
-
- float alpha = 0.0f;
- vec3 lightAccumulator = vec3(0, 0, 0);
- if(surfaceData.worldNormal.w > 0.0f)
- {
- for(uint i = 0; i < gLightOffsets[0]; ++i)
- {
- LightData lightData = gLightsData[i];
- lightAccumulator += getDirLightContibution(surfaceData, lightData);
- }
-
- for (uint i = 0; i < sNumLightsPerType[0]; ++i)
- {
- uint lightIdx = sLightIndices[i];
- LightData lightData = gLightsData[lightIdx];
- lightAccumulator += getPointLightContribution(worldPosition, surfaceData, lightData);
- }
- for(uint i = sNumLightsPerType[0]; i < sTotalNumLights; ++i)
- {
- uint lightIdx = sLightIndices[i];
- LightData lightData = gLightsData[lightIdx];
- lightAccumulator += getSpotLightContribution(worldPosition, surfaceData, lightData);
- }
-
- lightAccumulator += surfaceData.albedo.rgb * gAmbientFactor;
- alpha = 1.0f;
- }
-
- vec3 diffuse = surfaceData.albedo.xyz / PI; // TODO - Add better lighting model later
- return vec4(lightAccumulator * diffuse, alpha);
- }
-
- void main()
- {
- uint threadIndex = gl_LocalInvocationID.y * TILE_SIZE + gl_LocalInvocationID.x;
- ivec2 pixelPos = ivec2(gl_GlobalInvocationID.xy) + gViewportRectangle.xy;
- // Get data for all samples, and determine per-pixel minimum and maximum depth values
- SurfaceData surfaceData[MSAA_COUNT];
- uint sampleMinZ = 0x7F7FFFFF;
- uint sampleMaxZ = 0;
- #if MSAA_COUNT > 1
- for(int i = 0; i < MSAA_COUNT; ++i)
- {
- surfaceData[i] = getGBufferData(pixelPos, i);
-
- sampleMinZ = min(sampleMinZ, floatBitsToUint(-surfaceData[i].depth));
- sampleMaxZ = max(sampleMaxZ, floatBitsToUint(-surfaceData[i].depth));
- }
- #else
- surfaceData[0] = getGBufferData(pixelPos);
- sampleMinZ = floatBitsToUint(-surfaceData[0].depth);
- sampleMaxZ = floatBitsToUint(-surfaceData[0].depth);
- #endif
-
- // Set initial values
- if(threadIndex == 0)
- {
- sTileMinZ = 0x7F7FFFFF;
- sTileMaxZ = 0;
- sNumLightsPerType[0] = 0;
- sNumLightsPerType[1] = 0;
- sTotalNumLights = 0;
- }
-
- groupMemoryBarrier();
- barrier();
-
- atomicMin(sTileMinZ, sampleMinZ);
- atomicMax(sTileMaxZ, sampleMaxZ);
-
- groupMemoryBarrier();
- barrier();
-
- float minTileZ = uintBitsToFloat(sTileMinZ);
- float maxTileZ = uintBitsToFloat(sTileMaxZ);
-
- // Create a frustum for the current tile
- // See HLSL version for an explanation of the math
- vec2 tileScale = gViewportRectangle.zw / vec2(TILE_SIZE, TILE_SIZE);
- vec2 tileBias = tileScale - 1 - gl_WorkGroupID.xy * 2;
-
- float At = gMatProj[0][0] * tileScale.x;
- float Ctt = gMatProj[2][0] * tileScale.x - tileBias.x;
-
- float Bt = gMatProj[1][1] * tileScale.y;
- float Dtt = gMatProj[2][1] * tileScale.y + tileBias.y;
-
- // Extract left/right/top/bottom frustum planes from scaled projection matrix
- vec4 frustumPlanes[6];
- frustumPlanes[0] = vec4(At, 0.0f, gMatProj[2][3] + Ctt, 0.0f);
- frustumPlanes[1] = vec4(-At, 0.0f, gMatProj[2][3] - Ctt, 0.0f);
- frustumPlanes[2] = vec4(0.0f, -Bt, gMatProj[2][3] - Dtt, 0.0f);
- frustumPlanes[3] = vec4(0.0f, Bt, gMatProj[2][3] + Dtt, 0.0f);
-
- // Normalize
- for (uint i = 0; i < 4; ++i)
- frustumPlanes[i] /= length(frustumPlanes[i].xyz);
-
- // Generate near/far frustum planes
- frustumPlanes[4] = vec4(0.0f, 0.0f, -1.0f, -minTileZ);
- frustumPlanes[5] = vec4(0.0f, 0.0f, 1.0f, maxTileZ);
-
- // Find radial & spot lights overlapping the tile
- for(uint type = 0; type < 2; type++)
- {
- uint lightOffset = threadIndex + gLightOffsets[type];
- uint lightsEnd = gLightOffsets[type + 1];
- for (uint i = lightOffset; i < lightsEnd && i < MAX_LIGHTS; i += TILE_SIZE)
- {
- LightData lightData = gLightsData[i];
- vec4 lightPosition = gMatView * vec4(lightData.position, 1.0f);
- float lightRadius = lightData.attRadius;
-
- bool lightInTile = true;
-
- // First check side planes as this will cull majority of the lights
- for (uint j = 0; j < 4; ++j)
- {
- float dist = dot(frustumPlanes[j], lightPosition);
- lightInTile = lightInTile && (dist >= -lightRadius);
- }
- if (lightInTile)
- {
- bool inDepthRange = true;
-
- // Check near/far planes
- for (uint j = 4; j < 6; ++j)
- {
- float dist = dot(frustumPlanes[j], lightPosition);
- inDepthRange = inDepthRange && (dist >= -lightRadius);
- }
-
- // In tile, add to branch
- if (inDepthRange)
- {
- atomicAdd(sNumLightsPerType[type], 1U);
-
- uint idx = atomicAdd(sTotalNumLights, 1U);
- sLightIndices[idx] = i;
- }
- }
- }
- }
- groupMemoryBarrier();
- barrier();
- vec2 screenUv = (vec2(gViewportRectangle.xy + pixelPos) + 0.5f) / vec2(gViewportRectangle.zw);
- vec2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
-
- uvec2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
- // Ignore pixels out of valid range
- if (all(lessThan(gl_GlobalInvocationID.xy, viewportMax)))
- {
- #if MSAA_COUNT > 1
- vec4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
- imageStore(gOutput, pixelPos, 0, lighting);
- bool doPerSampleShading = needsPerSampleShading(surfaceData);
- if(doPerSampleShading)
- {
- for(int i = 1; i < MSAA_COUNT; ++i)
- {
- lighting = getLighting(clipSpacePos.xy, surfaceData[i]);
- imageStore(gOutput, pixelPos, i, lighting);
- }
- }
- else // Splat same information to all samples
- {
- for(int i = 1; i < MSAA_COUNT; ++i)
- imageStore(gOutput, pixelPos, i, lighting);
- }
-
- #else
- vec4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
- imageStore(gOutput, pixelPos, lighting);
- #endif
- }
- }
- };
- };
- };
|