BsMatrix3.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #pragma once
  4. #include "BsPrerequisitesUtil.h"
  5. #include "BsVector3.h"
  6. namespace BansheeEngine
  7. {
  8. /** @addtogroup Math
  9. * @{
  10. */
  11. /** A 3x3 matrix. Can be used for non-homogenous transformations of three dimensional vectors and points. */
  12. class BS_UTILITY_EXPORT Matrix3
  13. {
  14. private:
  15. struct EulerAngleOrderData
  16. {
  17. int a, b, c;
  18. float sign;
  19. };
  20. public:
  21. Matrix3() {}
  22. Matrix3(ZERO zero)
  23. :Matrix3(Matrix3::ZERO)
  24. { }
  25. Matrix3(IDENTITY identity)
  26. :Matrix3(Matrix3::IDENTITY)
  27. { }
  28. Matrix3(const Matrix3& mat)
  29. {
  30. memcpy(m, mat.m, 9*sizeof(float));
  31. }
  32. Matrix3(float m00, float m01, float m02,
  33. float m10, float m11, float m12,
  34. float m20, float m21, float m22)
  35. {
  36. m[0][0] = m00;
  37. m[0][1] = m01;
  38. m[0][2] = m02;
  39. m[1][0] = m10;
  40. m[1][1] = m11;
  41. m[1][2] = m12;
  42. m[2][0] = m20;
  43. m[2][1] = m21;
  44. m[2][2] = m22;
  45. }
  46. /** Construct a matrix from a quaternion. */
  47. explicit Matrix3(const Quaternion& rotation)
  48. {
  49. fromQuaternion(rotation);
  50. }
  51. /** Construct a matrix that performs rotation and scale. */
  52. explicit Matrix3(const Quaternion& rotation, const Vector3& scale)
  53. {
  54. fromQuaternion(rotation);
  55. for (int row = 0; row < 3; row++)
  56. {
  57. for (int col = 0; col < 3; col++)
  58. m[row][col] = scale[row]*m[row][col];
  59. }
  60. }
  61. /** Construct a matrix from an angle/axis pair. */
  62. explicit Matrix3(const Vector3& axis, const Radian& angle)
  63. {
  64. fromAxisAngle(axis, angle);
  65. }
  66. /** Construct a matrix from 3 orthonormal local axes. */
  67. explicit Matrix3(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
  68. {
  69. fromAxes(xaxis, yaxis, zaxis);
  70. }
  71. /**
  72. * Construct a matrix from euler angles, YXZ ordering.
  73. *
  74. * @see Matrix3::fromEulerAngles
  75. */
  76. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
  77. {
  78. fromEulerAngles(xAngle, yAngle, zAngle);
  79. }
  80. /**
  81. * Construct a matrix from euler angles, custom ordering.
  82. *
  83. * @see Matrix3::fromEulerAngles
  84. */
  85. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
  86. {
  87. fromEulerAngles(xAngle, yAngle, zAngle, order);
  88. }
  89. /** Swaps the contents of this matrix with another. */
  90. void swap(Matrix3& other)
  91. {
  92. std::swap(m[0][0], other.m[0][0]);
  93. std::swap(m[0][1], other.m[0][1]);
  94. std::swap(m[0][2], other.m[0][2]);
  95. std::swap(m[1][0], other.m[1][0]);
  96. std::swap(m[1][1], other.m[1][1]);
  97. std::swap(m[1][2], other.m[1][2]);
  98. std::swap(m[2][0], other.m[2][0]);
  99. std::swap(m[2][1], other.m[2][1]);
  100. std::swap(m[2][2], other.m[2][2]);
  101. }
  102. /** Returns a row of the matrix. */
  103. float* operator[] (UINT32 row) const
  104. {
  105. assert(row < 3);
  106. return (float*)m[row];
  107. }
  108. Vector3 getColumn(UINT32 col) const;
  109. void setColumn(UINT32 col, const Vector3& vec);
  110. Matrix3& operator= (const Matrix3& rhs)
  111. {
  112. memcpy(m, rhs.m, 9*sizeof(float));
  113. return *this;
  114. }
  115. bool operator== (const Matrix3& rhs) const;
  116. bool operator!= (const Matrix3& rhs) const;
  117. Matrix3 operator+ (const Matrix3& rhs) const;
  118. Matrix3 operator- (const Matrix3& rhs) const;
  119. Matrix3 operator* (const Matrix3& rhs) const;
  120. Matrix3 operator- () const;
  121. Matrix3 operator* (float rhs) const;
  122. friend Matrix3 operator* (float lhs, const Matrix3& rhs);
  123. /** Transforms the given vector by this matrix and returns the newly transformed vector. */
  124. Vector3 transform(const Vector3& vec) const;
  125. /** Returns a transpose of the matrix (switched columns and rows). */
  126. Matrix3 transpose () const;
  127. /**
  128. * Calculates an inverse of the matrix if it exists.
  129. *
  130. * @param[out] mat Resulting matrix inverse.
  131. * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
  132. * Zero determinant means inverse doesn't exist.
  133. * @return True if inverse exists, false otherwise.
  134. */
  135. bool inverse(Matrix3& mat, float fTolerance = 1e-06f) const;
  136. /**
  137. * Calculates an inverse of the matrix if it exists.
  138. *
  139. * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
  140. * Zero determinant means inverse doesn't exist.
  141. *
  142. * @return Resulting matrix inverse if it exists, otherwise a zero matrix.
  143. */
  144. Matrix3 inverse(float fTolerance = 1e-06f) const;
  145. /** Calculates the matrix determinant. */
  146. float determinant() const;
  147. /**
  148. * Decompose a Matrix3 to rotation and scale.
  149. *
  150. * @note
  151. * Matrix must consist only of rotation and uniform scale transformations, otherwise accurate results are not
  152. * guaranteed. Applying non-uniform scale guarantees rotation portion will not be accurate.
  153. */
  154. void decomposition(Quaternion& rotation, Vector3& scale) const;
  155. /**
  156. * Decomposes the matrix into various useful values.
  157. *
  158. * @param[out] matL Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  159. * doesn't use non-uniform scaling this matrix will be a conjugate transpose of the rotation part of the matrix.
  160. * @param[out] matS Singular values of the matrix. If your matrix is affine these will be scaling factors of the matrix.
  161. * @param[out] matR Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  162. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  163. */
  164. void singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const;
  165. /**
  166. * Decomposes the matrix into a set of values.
  167. *
  168. * @param[out] matQ Columns form orthonormal bases. If your matrix is affine and
  169. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  170. * @param[out] vecD If the matrix is affine these will be scaling factors of the matrix.
  171. * @param[out] vecU If the matrix is affine these will be shear factors of the matrix.
  172. */
  173. void QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const;
  174. /** Gram-Schmidt orthonormalization (applied to columns of rotation matrix) */
  175. void orthonormalize();
  176. /**
  177. * Converts an orthonormal matrix to axis angle representation.
  178. *
  179. * @note Matrix must be orthonormal.
  180. */
  181. void toAxisAngle(Vector3& axis, Radian& angle) const;
  182. /** Creates a rotation matrix from an axis angle representation. */
  183. void fromAxisAngle(const Vector3& axis, const Radian& angle);
  184. /**
  185. * Converts an orthonormal matrix to quaternion representation.
  186. *
  187. * @note Matrix must be orthonormal.
  188. */
  189. void toQuaternion(Quaternion& quat) const;
  190. /** Creates a rotation matrix from a quaternion representation. */
  191. void fromQuaternion(const Quaternion& quat);
  192. /** Creates a matrix from a three axes. */
  193. void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
  194. /**
  195. * Converts an orthonormal matrix to euler angle (pitch/yaw/roll) representation.
  196. *
  197. * @param[in,out] xAngle Rotation about x axis. (AKA Pitch)
  198. * @param[in,out] yAngle Rotation about y axis. (AKA Yaw)
  199. * @param[in,out] zAngle Rotation about z axis. (AKA Roll)
  200. * @return True if unique solution was found, false otherwise.
  201. *
  202. * @note Matrix must be orthonormal.
  203. */
  204. bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const;
  205. /**
  206. * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  207. *
  208. * @param[in] xAngle Rotation about x axis. (AKA Pitch)
  209. * @param[in] yAngle Rotation about y axis. (AKA Yaw)
  210. * @param[in] zAngle Rotation about z axis. (AKA Roll)
  211. *
  212. * @note Matrix must be orthonormal.
  213. * Since different values will be produced depending in which order are the rotations applied, this method assumes
  214. * they are applied in YXZ order. If you need a specific order, use the overloaded "fromEulerAngles" method instead.
  215. */
  216. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle);
  217. /**
  218. * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  219. *
  220. * @param[in] xAngle Rotation about x axis. (AKA Pitch)
  221. * @param[in] yAngle Rotation about y axis. (AKA Yaw)
  222. * @param[in] zAngle Rotation about z axis. (AKA Roll)
  223. * @param[in] order The order in which rotations will be applied.
  224. * Different rotations can be created depending on the order.
  225. *
  226. * @note Matrix must be orthonormal.
  227. */
  228. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order);
  229. /**
  230. * Eigensolver, matrix must be symmetric.
  231. *
  232. * @note
  233. * Eigenvectors are vectors which when transformed by the matrix, only change in magnitude, but not in direction.
  234. * Eigenvalue is that magnitude. In other words you will get the same result whether you multiply the vector by the
  235. * matrix or by its eigenvalue.
  236. */
  237. void eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const;
  238. static const float EPSILON;
  239. static const Matrix3 ZERO;
  240. static const Matrix3 IDENTITY;
  241. protected:
  242. friend class Matrix4;
  243. // Support for eigensolver
  244. void tridiagonal (float diag[3], float subDiag[3]);
  245. bool QLAlgorithm (float diag[3], float subDiag[3]);
  246. // Support for singular value decomposition
  247. static const float SVD_EPSILON;
  248. static const unsigned int SVD_MAX_ITERS;
  249. static void bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  250. static void golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  251. // Euler angle conversions
  252. static const EulerAngleOrderData EA_LOOKUP[6];
  253. float m[3][3];
  254. };
  255. /** @} */
  256. /** @cond SPECIALIZATIONS */
  257. BS_ALLOW_MEMCPY_SERIALIZATION(Matrix3);
  258. /** @endcond */
  259. }