BsPhysX.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. #include "BsPhysX.h"
  2. #include "PxPhysicsAPI.h"
  3. #include "BsPhysXMaterial.h"
  4. #include "BsPhysXMesh.h"
  5. #include "BsPhysXRigidbody.h"
  6. #include "BsPhysXBoxCollider.h"
  7. #include "BsPhysXSphereCollider.h"
  8. #include "BsPhysXPlaneCollider.h"
  9. #include "BsPhysXCapsuleCollider.h"
  10. #include "BsTaskScheduler.h"
  11. #include "BsTime.h"
  12. #include "Bsvector3.h"
  13. using namespace physx;
  14. namespace BansheeEngine
  15. {
  16. struct PHYSICS_INIT_DESC
  17. {
  18. float typicalLength = 1.0f;
  19. float typicalSpeed = 9.81f;
  20. Vector3 gravity = Vector3(0.0f, -9.81f, 0.0f);
  21. bool initCooking = true; // TODO: Disable this for Game build
  22. float timeStep = 1.0f / 60.0f;
  23. };
  24. class PhysXAllocator : public PxAllocatorCallback
  25. {
  26. public:
  27. void* allocate(size_t size, const char*, const char*, int) override
  28. {
  29. void* ptr = bs_alloc_aligned16((UINT32)size);
  30. PX_ASSERT((reinterpret_cast<size_t>(ptr) & 15) == 0);
  31. return ptr;
  32. }
  33. void deallocate(void* ptr) override
  34. {
  35. bs_free_aligned16(ptr);
  36. }
  37. };
  38. class PhysXErrorCallback : public PxErrorCallback
  39. {
  40. public:
  41. void reportError(PxErrorCode::Enum code, const char* message, const char* file, int line) override
  42. {
  43. {
  44. const char* errorCode = nullptr;
  45. UINT32 severity = 0;
  46. switch (code)
  47. {
  48. case PxErrorCode::eNO_ERROR:
  49. errorCode = "No error";
  50. break;
  51. case PxErrorCode::eINVALID_PARAMETER:
  52. errorCode = "Invalid parameter";
  53. severity = 2;
  54. break;
  55. case PxErrorCode::eINVALID_OPERATION:
  56. errorCode = "Invalid operation";
  57. severity = 2;
  58. break;
  59. case PxErrorCode::eOUT_OF_MEMORY:
  60. errorCode = "Out of memory";
  61. severity = 2;
  62. break;
  63. case PxErrorCode::eDEBUG_INFO:
  64. errorCode = "Info";
  65. break;
  66. case PxErrorCode::eDEBUG_WARNING:
  67. errorCode = "Warning";
  68. severity = 1;
  69. break;
  70. case PxErrorCode::ePERF_WARNING:
  71. errorCode = "Performance warning";
  72. severity = 1;
  73. break;
  74. case PxErrorCode::eABORT:
  75. errorCode = "Abort";
  76. severity = 2;
  77. break;
  78. case PxErrorCode::eINTERNAL_ERROR:
  79. errorCode = "Internal error";
  80. severity = 2;
  81. break;
  82. case PxErrorCode::eMASK_ALL:
  83. default:
  84. errorCode = "Unknown error";
  85. severity = 2;
  86. break;
  87. }
  88. StringStream ss;
  89. switch(severity)
  90. {
  91. case 0:
  92. ss << "PhysX info (" << errorCode << "): " << message << " at " << file << ":" << line;
  93. LOGDBG(ss.str());
  94. break;
  95. case 1:
  96. ss << "PhysX warning (" << errorCode << "): " << message << " at " << file << ":" << line;
  97. LOGWRN(ss.str());
  98. break;
  99. case 2:
  100. ss << "PhysX error (" << errorCode << "): " << message << " at " << file << ":" << line;
  101. LOGERR(ss.str());
  102. BS_ASSERT(false); // Halt execution on debug builds when error occurrs
  103. break;
  104. }
  105. }
  106. }
  107. };
  108. class PhysXEventCallback : public PxSimulationEventCallback
  109. {
  110. void onConstraintBreak(PxConstraintInfo* constraints, PxU32 count) override { /* Do nothing */ }
  111. void onWake(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  112. void onSleep(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  113. void onTrigger(PxTriggerPair* pairs, PxU32 count) override
  114. {
  115. for (PxU32 i = 0; i < count; i++)
  116. {
  117. const PxTriggerPair& pair = pairs[i];
  118. PhysX::ContactEventType type;
  119. bool ignoreContact = false;
  120. switch ((UINT32)pair.status)
  121. {
  122. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  123. type = PhysX::ContactEventType::ContactBegin;
  124. break;
  125. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  126. type = PhysX::ContactEventType::ContactStay;
  127. break;
  128. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  129. type = PhysX::ContactEventType::ContactEnd;
  130. break;
  131. default:
  132. ignoreContact = true;
  133. break;
  134. }
  135. if (ignoreContact)
  136. continue;
  137. PhysX::TriggerEvent event;
  138. event.trigger = (Collider*)pair.triggerShape->userData;
  139. event.other = (Collider*)pair.otherShape->userData;
  140. event.type = type;
  141. gPhysX()._reportTriggerEvent(event);
  142. }
  143. }
  144. void onContact(const PxContactPairHeader& pairHeader, const PxContactPair* pairs, PxU32 count) override
  145. {
  146. for (PxU32 i = 0; i < count; i++)
  147. {
  148. const PxContactPair& pair = pairs[i];
  149. PhysX::ContactEventType type;
  150. bool ignoreContact = false;
  151. switch((UINT32)pair.events)
  152. {
  153. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  154. type = PhysX::ContactEventType::ContactBegin;
  155. break;
  156. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  157. type = PhysX::ContactEventType::ContactStay;
  158. break;
  159. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  160. type = PhysX::ContactEventType::ContactEnd;
  161. break;
  162. default:
  163. ignoreContact = true;
  164. break;
  165. }
  166. if (ignoreContact)
  167. continue;
  168. PhysX::ContactEvent event;
  169. event.colliderA = (Collider*)pair.shapes[0]->userData;
  170. event.colliderB = (Collider*)pair.shapes[1]->userData;
  171. event.type = type;
  172. PxU32 contactCount = pair.contactCount;
  173. const PxU8* stream = pair.contactStream;
  174. PxU16 streamSize = pair.contactStreamSize;
  175. if (contactCount > 0 && streamSize > 0)
  176. {
  177. PxU32 contactIdx = 0;
  178. PxContactStreamIterator iter((PxU8*)stream, streamSize);
  179. stream += ((streamSize + 15) & ~15);
  180. const PxReal* impulses = reinterpret_cast<const PxReal*>(stream);
  181. PxU32 hasImpulses = (pair.flags & PxContactPairFlag::eINTERNAL_HAS_IMPULSES);
  182. while (iter.hasNextPatch())
  183. {
  184. iter.nextPatch();
  185. while (iter.hasNextContact())
  186. {
  187. iter.nextContact();
  188. ContactPoint point;
  189. point.position = fromPxVector(iter.getContactPoint());
  190. point.separation = iter.getSeparation();
  191. point.normal = fromPxVector(iter.getContactNormal());
  192. if (hasImpulses)
  193. point.impulse = impulses[contactIdx];
  194. else
  195. point.impulse = 0.0f;
  196. event.points.push_back(point);
  197. contactIdx++;
  198. }
  199. }
  200. }
  201. gPhysX()._reportContactEvent(event);
  202. }
  203. }
  204. };
  205. class PhysXCPUDispatcher : public PxCpuDispatcher
  206. {
  207. public:
  208. void submitTask(PxBaseTask& physxTask) override
  209. {
  210. // Note: Banshee's task scheduler is pretty low granularity. Consider a better task manager in case PhysX ends
  211. // up submitting many tasks.
  212. // - PhysX's task manager doesn't seem much lighter either. But perhaps I can at least create a task pool to
  213. // avoid allocating them constantly.
  214. auto runTask = [&]() { physxTask.run(); physxTask.release(); };
  215. TaskPtr task = Task::create("PhysX", runTask);
  216. TaskScheduler::instance().addTask(task);
  217. }
  218. PxU32 getWorkerCount() const override
  219. {
  220. return (PxU32)TaskScheduler::instance().getNumWorkers();
  221. }
  222. };
  223. PxFilterFlags PhysXFilterShader(PxFilterObjectAttributes attr0, PxFilterData data0, PxFilterObjectAttributes attr1,
  224. PxFilterData data1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
  225. {
  226. if (PxFilterObjectIsTrigger(attr0) || PxFilterObjectIsTrigger(attr1))
  227. {
  228. pairFlags = PxPairFlag::eTRIGGER_DEFAULT;
  229. return PxFilterFlags();
  230. }
  231. UINT64 groupA = *(UINT64*)&data0.word0;
  232. UINT64 groupB = *(UINT64*)&data1.word0;
  233. bool canCollide = gPhysics().isCollisionEnabled(groupA, groupB);
  234. if (!canCollide)
  235. return PxFilterFlag::eSUPPRESS;
  236. pairFlags = PxPairFlag::eCONTACT_DEFAULT;
  237. return PxFilterFlags();
  238. }
  239. static PhysXAllocator gPhysXAllocator;
  240. static PhysXErrorCallback gPhysXErrorHandler;
  241. static PhysXCPUDispatcher gPhysXCPUDispatcher;
  242. static PhysXEventCallback gPhysXEventCallback;
  243. PhysX::PhysX()
  244. {
  245. PHYSICS_INIT_DESC input; // TODO - Make this an input parameter.
  246. PxTolerancesScale scale;
  247. scale.length = input.typicalLength;
  248. scale.speed = input.typicalSpeed;
  249. mFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gPhysXAllocator, gPhysXErrorHandler);
  250. mPhysics = PxCreateBasePhysics(PX_PHYSICS_VERSION, *mFoundation, scale);
  251. PxRegisterArticulations(*mPhysics);
  252. if (input.initCooking)
  253. {
  254. // Note: PhysX supports cooking for specific platforms to make the generated results better. Consider
  255. // allowing the meshes to be re-cooked when target platform is changed. Right now we just use the default value.
  256. PxCookingParams cookingParams(scale);
  257. mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, cookingParams);
  258. }
  259. PxSceneDesc sceneDesc(scale); // TODO - Test out various other parameters provided by scene desc
  260. sceneDesc.gravity = toPxVector(input.gravity);
  261. sceneDesc.cpuDispatcher = &gPhysXCPUDispatcher;
  262. sceneDesc.filterShader = PhysXFilterShader;
  263. sceneDesc.simulationEventCallback = &gPhysXEventCallback;
  264. sceneDesc.flags = PxSceneFlag::eENABLE_ACTIVETRANSFORMS;
  265. mScene = mPhysics->createScene(sceneDesc);
  266. mSimulationStep = input.timeStep;
  267. mDefaultMaterial = mPhysics->createMaterial(0.0f, 0.0f, 0.0f);
  268. }
  269. PhysX::~PhysX()
  270. {
  271. mScene->release();
  272. if (mCooking != nullptr)
  273. mCooking->release();
  274. mPhysics->release();
  275. mFoundation->release();
  276. }
  277. void PhysX::update()
  278. {
  279. mUpdateInProgress = true;
  280. float nextFrameTime = mLastSimulationTime + mSimulationStep;
  281. float curFrameTime = gTime().getTime();
  282. if(curFrameTime < nextFrameTime)
  283. {
  284. // TODO - Interpolate rigidbodies but perform no actual simulation
  285. return;
  286. }
  287. float simulationAmount = curFrameTime - mLastSimulationTime;
  288. while (simulationAmount >= mSimulationStep) // In case we're running really slow multiple updates might be needed
  289. {
  290. // Note: Consider delaying fetchResults one frame. This could improve performance because Physics update would be
  291. // able to run parallel to the simulation thread, but at a cost to input latency.
  292. // TODO - Provide a scratch buffer for the simulation (use the frame allocator, but I must extend it so it allocates
  293. // on a 16 byte boundary).
  294. mScene->simulate(mSimulationStep);
  295. mScene->fetchResults(true);
  296. // Update rigidbodies with new transforms
  297. PxU32 numActiveTransforms;
  298. const PxActiveTransform* activeTransforms = mScene->getActiveTransforms(numActiveTransforms);
  299. for (PxU32 i = 0; i < numActiveTransforms; i++)
  300. {
  301. Rigidbody* rigidbody = static_cast<Rigidbody*>(activeTransforms[i].userData);
  302. const PxTransform& transform = activeTransforms[i].actor2World;
  303. // Note: Make this faster, avoid dereferencing Rigidbody and attempt to access pos/rot destination directly,
  304. // use non-temporal writes
  305. rigidbody->_setTransform(fromPxVector(transform.p), fromPxQuaternion(transform.q));
  306. }
  307. simulationAmount -= mSimulationStep;
  308. }
  309. // TODO - Consider extrapolating for the remaining "simulationAmount" value
  310. mLastSimulationTime = curFrameTime;
  311. mUpdateInProgress = false;
  312. triggerEvents();
  313. }
  314. void PhysX::_reportContactEvent(const ContactEvent& event)
  315. {
  316. mContactEvents.push_back(event);
  317. }
  318. void PhysX::_reportTriggerEvent(const TriggerEvent& event)
  319. {
  320. mTriggerEvents.push_back(event);
  321. }
  322. void PhysX::triggerEvents()
  323. {
  324. CollisionData data;
  325. for(auto& entry : mTriggerEvents)
  326. {
  327. data.collider = entry.other;
  328. switch (entry.type)
  329. {
  330. case ContactEventType::ContactBegin:
  331. entry.trigger->onCollisionBegin(data);
  332. break;
  333. case ContactEventType::ContactStay:
  334. entry.trigger->onCollisionStay(data);
  335. break;
  336. case ContactEventType::ContactEnd:
  337. entry.trigger->onCollisionEnd(data);
  338. break;
  339. }
  340. }
  341. auto notifyContact = [&](Collider* obj, Collider* other, ContactEventType type,
  342. const Vector<ContactPoint>& points, bool flipNormals = false)
  343. {
  344. data.collider = other;
  345. data.contactPoints = points;
  346. if(flipNormals)
  347. {
  348. for (auto& point : data.contactPoints)
  349. point.normal = -point.normal;
  350. }
  351. SPtr<Rigidbody> rigidbody = obj->getRigidbody();
  352. if(rigidbody != nullptr)
  353. {
  354. switch (type)
  355. {
  356. case ContactEventType::ContactBegin:
  357. rigidbody->onCollisionBegin(data);
  358. break;
  359. case ContactEventType::ContactStay:
  360. rigidbody->onCollisionStay(data);
  361. break;
  362. case ContactEventType::ContactEnd:
  363. rigidbody->onCollisionEnd(data);
  364. break;
  365. }
  366. }
  367. else
  368. {
  369. switch (type)
  370. {
  371. case ContactEventType::ContactBegin:
  372. obj->onCollisionBegin(data);
  373. break;
  374. case ContactEventType::ContactStay:
  375. obj->onCollisionStay(data);
  376. break;
  377. case ContactEventType::ContactEnd:
  378. obj->onCollisionEnd(data);
  379. break;
  380. }
  381. }
  382. };
  383. for (auto& entry : mContactEvents)
  384. {
  385. notifyContact(entry.colliderA, entry.colliderB, entry.type, entry.points, true);
  386. notifyContact(entry.colliderB, entry.colliderA, entry.type, entry.points, false);
  387. }
  388. mTriggerEvents.clear();
  389. mContactEvents.clear();
  390. }
  391. SPtr<PhysicsMaterial> PhysX::createMaterial(float staticFriction, float dynamicFriction, float restitution)
  392. {
  393. return bs_shared_ptr_new<PhysXMaterial>(mPhysics, staticFriction, dynamicFriction, restitution);
  394. }
  395. SPtr<PhysicsMesh> PhysX::createMesh(const MeshDataPtr& meshData, PhysicsMeshType type)
  396. {
  397. return bs_shared_ptr_new<PhysXMesh>(meshData, type);
  398. }
  399. SPtr<Rigidbody> PhysX::createRigidbody(const HSceneObject& linkedSO)
  400. {
  401. return bs_shared_ptr_new<PhysXRigidbody>(mPhysics, mScene, linkedSO);
  402. }
  403. SPtr<BoxCollider> PhysX::createBoxCollider(const Vector3& extents, const Vector3& position,
  404. const Quaternion& rotation)
  405. {
  406. return bs_shared_ptr_new<PhysXBoxCollider>(mPhysics, position, rotation, extents);
  407. }
  408. SPtr<SphereCollider> PhysX::createSphereCollider(float radius, const Vector3& position, const Quaternion& rotation)
  409. {
  410. return bs_shared_ptr_new<PhysXSphereCollider>(mPhysics, position, rotation, radius);
  411. }
  412. SPtr<PlaneCollider> PhysX::createPlaneCollider(const Vector3& position, const Quaternion& rotation)
  413. {
  414. return bs_shared_ptr_new<PhysXPlaneCollider>(mPhysics, position, rotation);
  415. }
  416. SPtr<CapsuleCollider> PhysX::createCapsuleCollider(float radius, float halfHeight, const Vector3& position,
  417. const Quaternion& rotation)
  418. {
  419. return bs_shared_ptr_new<PhysXCapsuleCollider>(mPhysics, position, rotation, radius, halfHeight);
  420. }
  421. PhysX& gPhysX()
  422. {
  423. return static_cast<PhysX&>(PhysX::instance());
  424. }
  425. }