BsVulkanDevice.cpp 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsVulkanDevice.h"
  4. #include "BsVulkanQueue.h"
  5. #include "BsVulkanCommandBuffer.h"
  6. #include "BsVulkanDescriptorManager.h"
  7. namespace BansheeEngine
  8. {
  9. VulkanDevice::VulkanDevice(VkPhysicalDevice device)
  10. :mPhysicalDevice(device), mLogicalDevice(nullptr), mQueueInfos{}
  11. {
  12. // Set to default
  13. for (UINT32 i = 0; i < VQT_COUNT; i++)
  14. mQueueInfos[i].familyIdx = (UINT32)-1;
  15. vkGetPhysicalDeviceProperties(device, &mDeviceProperties);
  16. vkGetPhysicalDeviceFeatures(device, &mDeviceFeatures);
  17. vkGetPhysicalDeviceMemoryProperties(device, &mMemoryProperties);
  18. uint32_t numQueueFamilies;
  19. vkGetPhysicalDeviceQueueFamilyProperties(device, &numQueueFamilies, nullptr);
  20. Vector<VkQueueFamilyProperties> queueFamilyProperties(numQueueFamilies);
  21. vkGetPhysicalDeviceQueueFamilyProperties(device, &numQueueFamilies, queueFamilyProperties.data());
  22. // Create queues
  23. const float defaultQueuePriorities[BS_MAX_QUEUES_PER_TYPE] = { 0.0f };
  24. Vector<VkDeviceQueueCreateInfo> queueCreateInfos;
  25. auto populateQueueInfo = [&](VulkanQueueType type, uint32_t familyIdx)
  26. {
  27. queueCreateInfos.push_back(VkDeviceQueueCreateInfo());
  28. VkDeviceQueueCreateInfo& createInfo = queueCreateInfos.back();
  29. createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
  30. createInfo.pNext = nullptr;
  31. createInfo.flags = 0;
  32. createInfo.queueFamilyIndex = familyIdx;
  33. createInfo.queueCount = std::min(queueFamilyProperties[familyIdx].queueCount, (uint32_t)BS_MAX_QUEUES_PER_TYPE);
  34. createInfo.pQueuePriorities = defaultQueuePriorities;
  35. mQueueInfos[type].familyIdx = familyIdx;
  36. mQueueInfos[type].queues.resize(createInfo.queueCount, nullptr);
  37. };
  38. // Look for dedicated compute queues
  39. for (UINT32 i = 0; i < (UINT32)queueFamilyProperties.size(); i++)
  40. {
  41. if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_COMPUTE_BIT) && (queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0)
  42. {
  43. populateQueueInfo(VQT_COMPUTE, i);
  44. break;
  45. }
  46. }
  47. // Look for dedicated upload queues
  48. for (UINT32 i = 0; i < (UINT32)queueFamilyProperties.size(); i++)
  49. {
  50. if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_TRANSFER_BIT) &&
  51. ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0) &&
  52. ((queueFamilyProperties[i].queueFlags & VK_QUEUE_COMPUTE_BIT) == 0))
  53. {
  54. populateQueueInfo(VQT_UPLOAD, i);
  55. break;
  56. }
  57. }
  58. // Looks for graphics queues
  59. for (UINT32 i = 0; i < (UINT32)queueFamilyProperties.size(); i++)
  60. {
  61. if (queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)
  62. {
  63. populateQueueInfo(VQT_GRAPHICS, i);
  64. break;
  65. }
  66. }
  67. // Create logical device
  68. const char* extensions[] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME };
  69. uint32_t numExtensions = sizeof(extensions) / sizeof(extensions[0]);
  70. VkDeviceCreateInfo deviceInfo;
  71. deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
  72. deviceInfo.pNext = nullptr;
  73. deviceInfo.flags = 0;
  74. deviceInfo.queueCreateInfoCount = (uint32_t)queueCreateInfos.size();
  75. deviceInfo.pQueueCreateInfos = queueCreateInfos.data();
  76. deviceInfo.pEnabledFeatures = &mDeviceFeatures;
  77. deviceInfo.enabledExtensionCount = numExtensions;
  78. deviceInfo.ppEnabledExtensionNames = extensions;
  79. deviceInfo.enabledLayerCount = 0;
  80. deviceInfo.ppEnabledLayerNames = nullptr;
  81. VkResult result = vkCreateDevice(device, &deviceInfo, gVulkanAllocator, &mLogicalDevice);
  82. assert(result == VK_SUCCESS);
  83. // Retrieve queues
  84. for(UINT32 i = 0; i < VQT_COUNT; i++)
  85. {
  86. UINT32 numQueues = (UINT32)mQueueInfos[i].queues.size();
  87. for (UINT32 j = 0; j < numQueues; j++)
  88. {
  89. VkQueue queue;
  90. vkGetDeviceQueue(mLogicalDevice, mQueueInfos[i].familyIdx, j, &queue);
  91. mQueueInfos[i].queues[j] = bs_new<VulkanQueue>(queue);
  92. }
  93. }
  94. // Create pools/managers
  95. mCommandBufferPool = bs_new<VulkanCmdBufferPool>(*this);
  96. mDescriptorManager = bs_new<VulkanDescriptorManager>(*this);
  97. mResourceManager = bs_new<VulkanResourceManager>();
  98. }
  99. VulkanDevice::~VulkanDevice()
  100. {
  101. vkDeviceWaitIdle(mLogicalDevice);
  102. for (UINT32 i = 0; i < VQT_COUNT; i++)
  103. {
  104. UINT32 numQueues = (UINT32)mQueueInfos[i].queues.size();
  105. for (UINT32 j = 0; j < numQueues; j++)
  106. bs_delete(mQueueInfos[i].queues[j]);
  107. }
  108. bs_delete(mResourceManager);
  109. bs_delete(mDescriptorManager);
  110. bs_delete(mCommandBufferPool);
  111. vkDestroyDevice(mLogicalDevice, gVulkanAllocator);
  112. }
  113. VkDeviceMemory VulkanDevice::allocateMemory(VkImage image, VkMemoryPropertyFlags flags)
  114. {
  115. VkMemoryRequirements memReq;
  116. vkGetImageMemoryRequirements(mLogicalDevice, image, &memReq);
  117. VkDeviceMemory memory = allocateMemory(memReq, flags);
  118. VkResult result = vkBindImageMemory(mLogicalDevice, image, memory, 0);
  119. assert(result == VK_SUCCESS);
  120. return memory;
  121. }
  122. VkDeviceMemory VulkanDevice::allocateMemory(VkBuffer buffer, VkMemoryPropertyFlags flags)
  123. {
  124. VkMemoryRequirements memReq;
  125. vkGetBufferMemoryRequirements(mLogicalDevice, buffer, &memReq);
  126. VkDeviceMemory memory = allocateMemory(memReq, flags);
  127. VkResult result = vkBindBufferMemory(mLogicalDevice, buffer, memory, 0);
  128. assert(result == VK_SUCCESS);
  129. return memory;
  130. }
  131. VkDeviceMemory VulkanDevice::allocateMemory(const VkMemoryRequirements& reqs, VkMemoryPropertyFlags flags)
  132. {
  133. VkMemoryAllocateInfo allocateInfo;
  134. allocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  135. allocateInfo.pNext = nullptr;
  136. allocateInfo.memoryTypeIndex = findMemoryType(reqs.memoryTypeBits, flags);
  137. allocateInfo.allocationSize = reqs.size;
  138. if (allocateInfo.memoryTypeIndex == -1)
  139. return VK_NULL_HANDLE;
  140. VkDeviceMemory memory;
  141. VkResult result = vkAllocateMemory(mLogicalDevice, &allocateInfo, gVulkanAllocator, &memory);
  142. assert(result == VK_SUCCESS);
  143. return memory;
  144. }
  145. void VulkanDevice::freeMemory(VkDeviceMemory memory)
  146. {
  147. vkFreeMemory(mLogicalDevice, memory, gVulkanAllocator);
  148. }
  149. uint32_t VulkanDevice::findMemoryType(uint32_t requirementBits, VkMemoryPropertyFlags wantedFlags)
  150. {
  151. for (uint32_t i = 0; i < mMemoryProperties.memoryTypeCount; i++)
  152. {
  153. if (requirementBits & (1 << i))
  154. {
  155. if ((mMemoryProperties.memoryTypes[i].propertyFlags & wantedFlags) == wantedFlags)
  156. return i;
  157. }
  158. requirementBits >>= 1;
  159. }
  160. return -1;
  161. }
  162. }