BsMatrix3.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #pragma once
  4. #include "BsPrerequisitesUtil.h"
  5. #include "BsVector3.h"
  6. namespace BansheeEngine
  7. {
  8. /** @addtogroup Math
  9. * @{
  10. */
  11. /** A 3x3 matrix. Can be used for non-homogenous transformations of three dimensional vectors and points. */
  12. class BS_UTILITY_EXPORT Matrix3
  13. {
  14. private:
  15. struct EulerAngleOrderData
  16. {
  17. int a, b, c;
  18. float sign;
  19. };
  20. public:
  21. Matrix3() {}
  22. Matrix3(const Matrix3& mat)
  23. {
  24. memcpy(m, mat.m, 9*sizeof(float));
  25. }
  26. Matrix3(float m00, float m01, float m02,
  27. float m10, float m11, float m12,
  28. float m20, float m21, float m22)
  29. {
  30. m[0][0] = m00;
  31. m[0][1] = m01;
  32. m[0][2] = m02;
  33. m[1][0] = m10;
  34. m[1][1] = m11;
  35. m[1][2] = m12;
  36. m[2][0] = m20;
  37. m[2][1] = m21;
  38. m[2][2] = m22;
  39. }
  40. /** Construct a matrix from a quaternion. */
  41. explicit Matrix3(const Quaternion& rotation)
  42. {
  43. fromQuaternion(rotation);
  44. }
  45. /** Construct a matrix that performs rotation and scale. */
  46. explicit Matrix3(const Quaternion& rotation, const Vector3& scale)
  47. {
  48. fromQuaternion(rotation);
  49. for (int row = 0; row < 3; row++)
  50. {
  51. for (int col = 0; col < 3; col++)
  52. m[row][col] = scale[row]*m[row][col];
  53. }
  54. }
  55. /** Construct a matrix from an angle/axis pair. */
  56. explicit Matrix3(const Vector3& axis, const Radian& angle)
  57. {
  58. fromAxisAngle(axis, angle);
  59. }
  60. /** Construct a matrix from 3 orthonormal local axes. */
  61. explicit Matrix3(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
  62. {
  63. fromAxes(xaxis, yaxis, zaxis);
  64. }
  65. /**
  66. * Construct a matrix from euler angles, YXZ ordering.
  67. *
  68. * @see Matrix3::fromEulerAngles
  69. */
  70. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
  71. {
  72. fromEulerAngles(xAngle, yAngle, zAngle);
  73. }
  74. /**
  75. * Construct a matrix from euler angles, custom ordering.
  76. *
  77. * @see Matrix3::fromEulerAngles
  78. */
  79. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
  80. {
  81. fromEulerAngles(xAngle, yAngle, zAngle, order);
  82. }
  83. /** Swaps the contents of this matrix with another. */
  84. void swap(Matrix3& other)
  85. {
  86. std::swap(m[0][0], other.m[0][0]);
  87. std::swap(m[0][1], other.m[0][1]);
  88. std::swap(m[0][2], other.m[0][2]);
  89. std::swap(m[1][0], other.m[1][0]);
  90. std::swap(m[1][1], other.m[1][1]);
  91. std::swap(m[1][2], other.m[1][2]);
  92. std::swap(m[2][0], other.m[2][0]);
  93. std::swap(m[2][1], other.m[2][1]);
  94. std::swap(m[2][2], other.m[2][2]);
  95. }
  96. /** Returns a row of the matrix. */
  97. float* operator[] (UINT32 row) const
  98. {
  99. assert(row < 3);
  100. return (float*)m[row];
  101. }
  102. Vector3 getColumn(UINT32 col) const;
  103. void setColumn(UINT32 col, const Vector3& vec);
  104. Matrix3& operator= (const Matrix3& rhs)
  105. {
  106. memcpy(m, rhs.m, 9*sizeof(float));
  107. return *this;
  108. }
  109. bool operator== (const Matrix3& rhs) const;
  110. bool operator!= (const Matrix3& rhs) const;
  111. Matrix3 operator+ (const Matrix3& rhs) const;
  112. Matrix3 operator- (const Matrix3& rhs) const;
  113. Matrix3 operator* (const Matrix3& rhs) const;
  114. Matrix3 operator- () const;
  115. Matrix3 operator* (float rhs) const;
  116. friend Matrix3 operator* (float lhs, const Matrix3& rhs);
  117. /** Transforms the given vector by this matrix and returns the newly transformed vector. */
  118. Vector3 transform(const Vector3& vec) const;
  119. /** Returns a transpose of the matrix (switched columns and rows). */
  120. Matrix3 transpose () const;
  121. /**
  122. * Calculates an inverse of the matrix if it exists.
  123. *
  124. * @param[out] mat Resulting matrix inverse.
  125. * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
  126. * Zero determinant means inverse doesn't exist.
  127. * @return True if inverse exists, false otherwise.
  128. */
  129. bool inverse(Matrix3& mat, float fTolerance = 1e-06f) const;
  130. /**
  131. * Calculates an inverse of the matrix if it exists.
  132. *
  133. * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
  134. * Zero determinant means inverse doesn't exist.
  135. *
  136. * @return Resulting matrix inverse if it exists, otherwise a zero matrix.
  137. */
  138. Matrix3 inverse(float fTolerance = 1e-06f) const;
  139. /** Calculates the matrix determinant. */
  140. float determinant() const;
  141. /**
  142. * Decompose a Matrix3 to rotation and scale.
  143. *
  144. * @note
  145. * Matrix must consist only of rotation and uniform scale transformations, otherwise accurate results are not
  146. * guaranteed. Applying non-uniform scale guarantees rotation portion will not be accurate.
  147. */
  148. void decomposition(Quaternion& rotation, Vector3& scale) const;
  149. /**
  150. * Decomposes the matrix into various useful values.
  151. *
  152. * @param[out] matL Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  153. * doesn't use non-uniform scaling this matrix will be a conjugate transpose of the rotation part of the matrix.
  154. * @param[out] matS Singular values of the matrix. If your matrix is affine these will be scaling factors of the matrix.
  155. * @param[out] matR Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  156. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  157. */
  158. void singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const;
  159. /**
  160. * Decomposes the matrix into a set of values.
  161. *
  162. * @param[out] matQ Columns form orthonormal bases. If your matrix is affine and
  163. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  164. * @param[out] vecD If the matrix is affine these will be scaling factors of the matrix.
  165. * @param[out] vecU If the matrix is affine these will be shear factors of the matrix.
  166. */
  167. void QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const;
  168. /** Gram-Schmidt orthonormalization (applied to columns of rotation matrix) */
  169. void orthonormalize();
  170. /**
  171. * Converts an orthonormal matrix to axis angle representation.
  172. *
  173. * @note Matrix must be orthonormal.
  174. */
  175. void toAxisAngle(Vector3& axis, Radian& angle) const;
  176. /** Creates a rotation matrix from an axis angle representation. */
  177. void fromAxisAngle(const Vector3& axis, const Radian& angle);
  178. /**
  179. * Converts an orthonormal matrix to quaternion representation.
  180. *
  181. * @note Matrix must be orthonormal.
  182. */
  183. void toQuaternion(Quaternion& quat) const;
  184. /** Creates a rotation matrix from a quaternion representation. */
  185. void fromQuaternion(const Quaternion& quat);
  186. /** Creates a matrix from a three axes. */
  187. void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
  188. /**
  189. * Converts an orthonormal matrix to euler angle (pitch/yaw/roll) representation.
  190. *
  191. * @param[in,out] xAngle Rotation about x axis. (AKA Pitch)
  192. * @param[in,out] yAngle Rotation about y axis. (AKA Yaw)
  193. * @param[in,out] zAngle Rotation about z axis. (AKA Roll)
  194. * @return True if unique solution was found, false otherwise.
  195. *
  196. * @note Matrix must be orthonormal.
  197. */
  198. bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const;
  199. /**
  200. * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  201. *
  202. * @param[in] xAngle Rotation about x axis. (AKA Pitch)
  203. * @param[in] yAngle Rotation about y axis. (AKA Yaw)
  204. * @param[in] zAngle Rotation about z axis. (AKA Roll)
  205. *
  206. * @note Matrix must be orthonormal.
  207. * Since different values will be produced depending in which order are the rotations applied, this method assumes
  208. * they are applied in YXZ order. If you need a specific order, use the overloaded "fromEulerAngles" method instead.
  209. */
  210. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle);
  211. /**
  212. * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  213. *
  214. * @param[in] xAngle Rotation about x axis. (AKA Pitch)
  215. * @param[in] yAngle Rotation about y axis. (AKA Yaw)
  216. * @param[in] zAngle Rotation about z axis. (AKA Roll)
  217. * @param[in] order The order in which rotations will be applied.
  218. * Different rotations can be created depending on the order.
  219. *
  220. * @note Matrix must be orthonormal.
  221. */
  222. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order);
  223. /**
  224. * Eigensolver, matrix must be symmetric.
  225. *
  226. * @note
  227. * Eigenvectors are vectors which when transformed by the matrix, only change in magnitude, but not in direction.
  228. * Eigenvalue is that magnitude. In other words you will get the same result whether you multiply the vector by the
  229. * matrix or by its eigenvalue.
  230. */
  231. void eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const;
  232. static const float EPSILON;
  233. static const Matrix3 ZERO;
  234. static const Matrix3 IDENTITY;
  235. protected:
  236. friend class Matrix4;
  237. // Support for eigensolver
  238. void tridiagonal (float diag[3], float subDiag[3]);
  239. bool QLAlgorithm (float diag[3], float subDiag[3]);
  240. // Support for singular value decomposition
  241. static const float SVD_EPSILON;
  242. static const unsigned int SVD_MAX_ITERS;
  243. static void bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  244. static void golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  245. // Euler angle conversions
  246. static const EulerAngleOrderData EA_LOOKUP[6];
  247. float m[3][3];
  248. };
  249. /** @} */
  250. /** @cond SPECIALIZATIONS */
  251. BS_ALLOW_MEMCPY_SERIALIZATION(Matrix3);
  252. /** @endcond */
  253. }