BsBinarySerializer.cpp 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. #include "BsBinarySerializer.h"
  2. #include "BsException.h"
  3. #include "BsDebug.h"
  4. #include "BsIReflectable.h"
  5. #include "BsRTTIType.h"
  6. #include "BsRTTIField.h"
  7. #include "BsRTTIPlainField.h"
  8. #include "BsRTTIReflectableField.h"
  9. #include "BsRTTIReflectablePtrField.h"
  10. #include "BsRTTIManagedDataBlockField.h"
  11. #include <unordered_set>
  12. /**
  13. * @brief A macro that represents a block of code that gets used a lot inside
  14. * encodeInternal. It checks if the buffer has enough space, and if it does
  15. * it copies the data from the specified location and increments the needed
  16. * pointers and counters. If there is not enough space the buffer is flushed
  17. * (hopefully to make some space). If there is still not enough space the entire
  18. * encoding process ends.
  19. *
  20. * @param dataPtr Pointer to data which to copy.
  21. * @param size Size of the data to copy
  22. */
  23. #define COPY_TO_BUFFER(dataIter, size) \
  24. if((*bytesWritten + size##) > bufferLength) \
  25. { \
  26. mTotalBytesWritten += *bytesWritten; \
  27. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength); \
  28. if(buffer == nullptr || bufferLength < size##) return nullptr; \
  29. *bytesWritten = 0; \
  30. } \
  31. \
  32. memcpy(buffer, dataIter##, size##); \
  33. buffer += size##; \
  34. *bytesWritten += size##;
  35. namespace BansheeEngine
  36. {
  37. BinarySerializer::BinarySerializer()
  38. :mLastUsedObjectId(1)
  39. {
  40. }
  41. void BinarySerializer::encode(IReflectable* object, UINT8* buffer, UINT32 bufferLength, int* bytesWritten, std::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  42. {
  43. mObjectsToEncode.clear();
  44. mObjectAddrToId.clear();
  45. mLastUsedObjectId = 1;
  46. *bytesWritten = 0;
  47. mTotalBytesWritten = 0;
  48. UINT8* bufferStart = buffer;
  49. Vector<std::shared_ptr<IReflectable>> encodedObjects;
  50. UINT32 objectId = findOrCreatePersistentId(object);
  51. // Encode primary object and its value types
  52. buffer = encodeInternal(object, objectId, buffer, bufferLength, bytesWritten, flushBufferCallback);
  53. if(buffer == nullptr)
  54. {
  55. BS_EXCEPT(InternalErrorException,
  56. "Destination buffer is null or not large enough.");
  57. }
  58. // Encode pointed to objects and their value types
  59. UnorderedSet<UINT32> serializedObjects;
  60. while(true)
  61. {
  62. auto iter = mObjectsToEncode.begin();
  63. bool foundObjectToProcess = false;
  64. for(iter; iter != mObjectsToEncode.end(); ++iter)
  65. {
  66. auto foundExisting = serializedObjects.find(iter->objectId);
  67. if(foundExisting != serializedObjects.end())
  68. continue; // Already processed
  69. std::shared_ptr<IReflectable> curObject = iter->object;
  70. UINT32 curObjectid = iter->objectId;
  71. serializedObjects.insert(curObjectid);
  72. mObjectsToEncode.erase(iter);
  73. buffer = encodeInternal(curObject.get(), curObjectid, buffer, bufferLength, bytesWritten, flushBufferCallback);
  74. if(buffer == nullptr)
  75. {
  76. BS_EXCEPT(InternalErrorException,
  77. "Destination buffer is null or not large enough.");
  78. }
  79. foundObjectToProcess = true;
  80. // Ensure we keep a reference to the object so it isn't released.
  81. // The system assigns unique IDs to IReflectable objects based on pointer
  82. // addresses but if objects get released then same address could be assigned twice.
  83. // Note: To get around this I could assign unique IDs to IReflectable objects
  84. encodedObjects.push_back(curObject);
  85. break; // Need to start over as mObjectsToSerialize was possibly modified
  86. }
  87. if(!foundObjectToProcess) // We're done
  88. break;
  89. }
  90. // Final flush
  91. if(*bytesWritten > 0)
  92. {
  93. mTotalBytesWritten += *bytesWritten;
  94. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  95. }
  96. *bytesWritten = mTotalBytesWritten;
  97. encodedObjects.clear();
  98. mObjectsToEncode.clear();
  99. mObjectAddrToId.clear();
  100. }
  101. std::shared_ptr<IReflectable> BinarySerializer::decode(UINT8* data, UINT32 dataLength)
  102. {
  103. mObjectMap.clear();
  104. // Create empty instances of all ptr objects
  105. UINT32 bytesRead = 0;
  106. UINT8* dataIter = nullptr;
  107. std::shared_ptr<IReflectable> rootObject = nullptr;
  108. do
  109. {
  110. dataIter = data + bytesRead;
  111. if(sizeof(UINT32) > dataLength)
  112. {
  113. BS_EXCEPT(InternalErrorException,
  114. "Error decoding data.");
  115. }
  116. ObjectMetaData objectMetaData;
  117. objectMetaData.objectMeta = 0;
  118. objectMetaData.typeId = 0;
  119. memcpy(&objectMetaData, dataIter, sizeof(ObjectMetaData));
  120. UINT32 objectId = 0;
  121. UINT32 objectTypeId = 0;
  122. bool isBaseClass = false;
  123. decodeObjectMetaData(objectMetaData, objectId, objectTypeId, isBaseClass);
  124. if(isBaseClass)
  125. {
  126. BS_EXCEPT(InternalErrorException, "Encountered a base-class object while looking for a new object. " \
  127. "Base class objects are only supposed to be parts of a larger object.");
  128. }
  129. std::shared_ptr<IReflectable> object = IReflectable::createInstanceFromTypeId(objectTypeId);
  130. mObjectMap.insert(std::make_pair(objectId, ObjectToDecode(objectId, object, dataIter, bytesRead)));
  131. if(rootObject == nullptr)
  132. rootObject = object;
  133. } while (decodeInternal(nullptr, dataIter, dataLength, bytesRead));
  134. // Now go through all of the objects and actually decode them
  135. for(auto iter = mObjectMap.begin(); iter != mObjectMap.end(); ++iter)
  136. {
  137. ObjectToDecode& objToDecode = iter->second;
  138. if(objToDecode.isDecoded)
  139. continue;
  140. UINT32 objectBytesRead = objToDecode.locationInFile;
  141. decodeInternal(objToDecode.object, objToDecode.locationInBuffer, dataLength, objectBytesRead);
  142. }
  143. mObjectMap.clear();
  144. return rootObject;
  145. }
  146. UINT8* BinarySerializer::encodeInternal(IReflectable* object, UINT32 objectId, UINT8* buffer, UINT32& bufferLength,
  147. int* bytesWritten, std::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  148. {
  149. static const UINT32 META_SIZE = 4; // Meta field size
  150. static const UINT32 NUM_ELEM_FIELD_SIZE = 4; // Size of the field storing number of array elements
  151. static const UINT32 COMPLEX_TYPE_SIZE = 4; // Size of the field storing the size of a child complex type
  152. RTTITypeBase* si = object->getRTTI();
  153. bool isBaseClass = false;
  154. // If an object has base classes, we need to iterate through all of them
  155. do
  156. {
  157. si->onSerializationStarted(object);
  158. // Encode object ID & type
  159. ObjectMetaData objectMetaData = encodeObjectMetaData(objectId, si->getRTTIId(), isBaseClass);
  160. COPY_TO_BUFFER(&objectMetaData, sizeof(ObjectMetaData))
  161. int numFields = si->getNumFields();
  162. for(int i = 0; i < numFields; i++)
  163. {
  164. RTTIField* curGenericField = si->getField(i);
  165. // Copy field ID & other meta-data like field size and type
  166. int metaData = encodeFieldMetaData(curGenericField->mUniqueId, curGenericField->getTypeSize(),
  167. curGenericField->mIsVectorType, curGenericField->mType, curGenericField->hasDynamicSize());
  168. COPY_TO_BUFFER(&metaData, META_SIZE)
  169. if(curGenericField->mIsVectorType)
  170. {
  171. UINT32 arrayNumElems = curGenericField->getArraySize(object);
  172. // Copy num vector elements
  173. COPY_TO_BUFFER(&arrayNumElems, NUM_ELEM_FIELD_SIZE)
  174. switch(curGenericField->mType)
  175. {
  176. case SerializableFT_ReflectablePtr:
  177. {
  178. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  179. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  180. {
  181. std::shared_ptr<IReflectable> childObject = curField->getArrayValue(object, arrIdx);
  182. UINT32 objId = registerObjectPtr(childObject);
  183. COPY_TO_BUFFER(&objId, sizeof(UINT32))
  184. }
  185. break;
  186. }
  187. case SerializableFT_Reflectable:
  188. {
  189. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  190. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  191. {
  192. IReflectable& childObject = curField->getArrayValue(object, arrIdx);
  193. buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, bytesWritten, flushBufferCallback);
  194. if(buffer == nullptr)
  195. {
  196. si->onSerializationEnded(object);
  197. return nullptr;
  198. }
  199. }
  200. break;
  201. }
  202. case SerializableFT_Plain:
  203. {
  204. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  205. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  206. {
  207. UINT32 typeSize = 0;
  208. if(curField->hasDynamicSize())
  209. typeSize = curField->getArrayElemDynamicSize(object, arrIdx);
  210. else
  211. typeSize = curField->getTypeSize();
  212. if ((*bytesWritten + typeSize) > bufferLength)
  213. {
  214. UINT8* tempBuffer = (UINT8*)stackAlloc(typeSize);
  215. curField->arrayElemToBuffer(object, arrIdx, tempBuffer);
  216. buffer = dataBlockToBuffer(tempBuffer, typeSize, buffer, bufferLength, bytesWritten, flushBufferCallback);
  217. if (buffer == nullptr || bufferLength == 0)
  218. {
  219. stackDeallocLast(tempBuffer);
  220. si->onSerializationEnded(object);
  221. return nullptr;
  222. }
  223. stackDeallocLast(tempBuffer);
  224. }
  225. else
  226. {
  227. curField->arrayElemToBuffer(object, arrIdx, buffer);
  228. buffer += typeSize;
  229. *bytesWritten += typeSize;
  230. }
  231. }
  232. break;
  233. }
  234. default:
  235. BS_EXCEPT(InternalErrorException,
  236. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  237. ", Is array: " + toString(curGenericField->mIsVectorType));
  238. }
  239. }
  240. else
  241. {
  242. switch(curGenericField->mType)
  243. {
  244. case SerializableFT_ReflectablePtr:
  245. {
  246. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  247. std::shared_ptr<IReflectable> childObject = curField->getValue(object);
  248. UINT32 objId = registerObjectPtr(childObject);
  249. COPY_TO_BUFFER(&objId, sizeof(UINT32))
  250. break;
  251. }
  252. case SerializableFT_Reflectable:
  253. {
  254. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  255. IReflectable& childObject = curField->getValue(object);
  256. buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, bytesWritten, flushBufferCallback);
  257. if(buffer == nullptr)
  258. {
  259. si->onSerializationEnded(object);
  260. return nullptr;
  261. }
  262. break;
  263. }
  264. case SerializableFT_Plain:
  265. {
  266. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  267. UINT32 typeSize = 0;
  268. if(curField->hasDynamicSize())
  269. typeSize = curField->getDynamicSize(object);
  270. else
  271. typeSize = curField->getTypeSize();
  272. if ((*bytesWritten + typeSize) > bufferLength)
  273. {
  274. UINT8* tempBuffer = (UINT8*)stackAlloc(typeSize);
  275. curField->toBuffer(object, tempBuffer);
  276. buffer = dataBlockToBuffer(tempBuffer, typeSize, buffer, bufferLength, bytesWritten, flushBufferCallback);
  277. if (buffer == nullptr || bufferLength == 0)
  278. {
  279. stackDeallocLast(tempBuffer);
  280. si->onSerializationEnded(object);
  281. return nullptr;
  282. }
  283. stackDeallocLast(tempBuffer);
  284. }
  285. else
  286. {
  287. curField->toBuffer(object, buffer);
  288. buffer += typeSize;
  289. *bytesWritten += typeSize;
  290. }
  291. break;
  292. }
  293. case SerializableFT_DataBlock:
  294. {
  295. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  296. ManagedDataBlock value = curField->getValue(object);
  297. // Data block size
  298. UINT32 dataBlockSize = value.getSize();
  299. COPY_TO_BUFFER(&dataBlockSize, sizeof(UINT32))
  300. // Data block data
  301. UINT8* dataToStore = value.getData();
  302. buffer = dataBlockToBuffer(dataToStore, dataBlockSize, buffer, bufferLength, bytesWritten, flushBufferCallback);
  303. if (buffer == nullptr || bufferLength == 0)
  304. {
  305. si->onSerializationEnded(object);
  306. return nullptr;
  307. }
  308. break;
  309. }
  310. default:
  311. BS_EXCEPT(InternalErrorException,
  312. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  313. ", Is array: " + toString(curGenericField->mIsVectorType));
  314. }
  315. }
  316. }
  317. si->onSerializationEnded(object);
  318. si = si->getBaseClass();
  319. isBaseClass = true;
  320. } while(si != nullptr); // Repeat until we reach the top of the inheritance hierarchy
  321. return buffer;
  322. }
  323. bool BinarySerializer::decodeInternal(std::shared_ptr<IReflectable> object, UINT8* data, UINT32 dataLength, UINT32& bytesRead)
  324. {
  325. static const int META_SIZE = 4; // Meta field size
  326. static const int NUM_ELEM_FIELD_SIZE = 4; // Size of the field storing number of array elements
  327. static const int COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  328. static const int DATA_BLOCK_TYPE_FIELD_SIZE = 4;
  329. bool moreObjectsToProcess = false;
  330. RTTITypeBase* si = nullptr;
  331. if(object != nullptr)
  332. {
  333. si = object->getRTTI();
  334. if(si != nullptr)
  335. si->onDeserializationStarted(object.get());
  336. }
  337. if((bytesRead + sizeof(ObjectMetaData)) > dataLength)
  338. {
  339. BS_EXCEPT(InternalErrorException,
  340. "Error decoding data.");
  341. }
  342. ObjectMetaData objectMetaData;
  343. objectMetaData.objectMeta = 0;
  344. objectMetaData.typeId = 0;
  345. memcpy(&objectMetaData, data, sizeof(ObjectMetaData));
  346. data += sizeof(ObjectMetaData);
  347. bytesRead += sizeof(ObjectMetaData);
  348. UINT32 objectId = 0;
  349. UINT32 objectTypeId = 0;
  350. bool objectIsBaseClass = false;
  351. decodeObjectMetaData(objectMetaData, objectId, objectTypeId, objectIsBaseClass);
  352. while(bytesRead < dataLength)
  353. {
  354. int metaData = -1;
  355. if((bytesRead + META_SIZE) > dataLength)
  356. {
  357. BS_EXCEPT(InternalErrorException,
  358. "Error decoding data.");
  359. }
  360. memcpy((void*)&metaData, data, META_SIZE);
  361. if(isObjectMetaData(metaData)) // We've reached a new object
  362. {
  363. if((bytesRead + sizeof(ObjectMetaData)) > dataLength)
  364. {
  365. BS_EXCEPT(InternalErrorException,
  366. "Error decoding data.");
  367. }
  368. ObjectMetaData objMetaData;
  369. objMetaData.objectMeta = 0;
  370. objMetaData.typeId = 0;
  371. memcpy(&objMetaData, data, sizeof(ObjectMetaData));
  372. UINT32 objId = 0;
  373. UINT32 objTypeId = 0;
  374. bool objIsBaseClass = false;
  375. decodeObjectMetaData(objMetaData, objId, objTypeId, objIsBaseClass);
  376. // If it's a base class, get base class RTTI and handle that
  377. if(objIsBaseClass)
  378. {
  379. if(si != nullptr)
  380. si = si->getBaseClass();
  381. // Saved and current base classes don't match, so just skip over all that data
  382. if(si == nullptr || si->getRTTIId() != objTypeId)
  383. {
  384. si = nullptr;
  385. }
  386. if(si != nullptr)
  387. {
  388. si->onDeserializationStarted(object.get());
  389. }
  390. data += sizeof(ObjectMetaData);
  391. bytesRead += sizeof(ObjectMetaData);
  392. continue;
  393. }
  394. else
  395. {
  396. if(objId != 0)
  397. {
  398. moreObjectsToProcess = true; // New object, break out of this method and begin processing it from scratch
  399. goto exit;
  400. }
  401. // Objects with ID == 0 represent complex types serialized by value, but they should only get serialized
  402. // if we encounter a field with one, not by just iterating through the file.
  403. BS_EXCEPT(InternalErrorException, "Object with ID 0 encountered. Cannot proceed with serialization.");
  404. }
  405. }
  406. data += META_SIZE;
  407. bytesRead += META_SIZE;
  408. bool isArray;
  409. SerializableFieldType fieldType;
  410. UINT16 fieldId;
  411. UINT8 fieldSize;
  412. bool hasDynamicSize;
  413. decodeFieldMetaData(metaData, fieldId, fieldSize, isArray, fieldType, hasDynamicSize);
  414. RTTIField* curGenericField = nullptr;
  415. if(si != nullptr)
  416. curGenericField = si->findField(fieldId);
  417. if(curGenericField != nullptr)
  418. {
  419. if(!hasDynamicSize && curGenericField->getTypeSize() != fieldSize)
  420. {
  421. BS_EXCEPT(InternalErrorException,
  422. "Data type mismatch. Type size stored in file and actual type size don't match. ("
  423. + toString(curGenericField->getTypeSize()) + " vs. " + toString(fieldSize) + ")");
  424. }
  425. if(curGenericField->mIsVectorType != isArray)
  426. {
  427. BS_EXCEPT(InternalErrorException,
  428. "Data type mismatch. One is array, other is a single type.");
  429. }
  430. if(curGenericField->mType != fieldType)
  431. {
  432. BS_EXCEPT(InternalErrorException,
  433. "Data type mismatch. Field types don't match. " + toString(UINT32(curGenericField->mType)) + " vs. " + toString(UINT32(fieldType)));
  434. }
  435. }
  436. int arrayNumElems = 1;
  437. if(isArray)
  438. {
  439. if((bytesRead + NUM_ELEM_FIELD_SIZE) > dataLength)
  440. {
  441. BS_EXCEPT(InternalErrorException,
  442. "Error decoding data.");
  443. }
  444. memcpy((void*)&arrayNumElems, data, NUM_ELEM_FIELD_SIZE);
  445. data += NUM_ELEM_FIELD_SIZE;
  446. bytesRead += NUM_ELEM_FIELD_SIZE;
  447. if(curGenericField != nullptr)
  448. curGenericField->setArraySize(object.get(), arrayNumElems);
  449. switch(fieldType)
  450. {
  451. case SerializableFT_ReflectablePtr:
  452. {
  453. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  454. for(int i = 0; i < arrayNumElems; i++)
  455. {
  456. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  457. {
  458. BS_EXCEPT(InternalErrorException,
  459. "Error decoding data.");
  460. }
  461. int objectId = 0;
  462. memcpy(&objectId, data, COMPLEX_TYPE_FIELD_SIZE);
  463. data += COMPLEX_TYPE_FIELD_SIZE;
  464. bytesRead += COMPLEX_TYPE_FIELD_SIZE;
  465. if(curField != nullptr)
  466. {
  467. auto findObj = mObjectMap.find(objectId);
  468. if(findObj == mObjectMap.end())
  469. {
  470. if(objectId != 0)
  471. LOGWRN("When deserializing, object ID: " + toString(objectId) + " was found but no such object was contained in the file.");
  472. curField->setArrayValue(object.get(), i, nullptr);
  473. }
  474. else
  475. {
  476. ObjectToDecode& objToDecode = findObj->second;
  477. bool needsDecoding = (curField->getFlags() & RTTI_Flag_WeakRef) == 0 && !objToDecode.isDecoded;
  478. if(needsDecoding)
  479. {
  480. UINT32 objectBytesRead = objToDecode.locationInFile;
  481. decodeInternal(objToDecode.object, objToDecode.locationInBuffer, dataLength, objectBytesRead);
  482. objToDecode.isDecoded = true;
  483. }
  484. curField->setArrayValue(object.get(), i, objToDecode.object);
  485. }
  486. }
  487. }
  488. break;
  489. }
  490. case SerializableFT_Reflectable:
  491. {
  492. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  493. for(int i = 0; i < arrayNumElems; i++)
  494. {
  495. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  496. {
  497. BS_EXCEPT(InternalErrorException,
  498. "Error decoding data.");
  499. }
  500. int complexTypeSize = 0;
  501. if(curField != nullptr)
  502. {
  503. std::shared_ptr<IReflectable> complexType = complexTypeFromBuffer(curField, data, &complexTypeSize);
  504. curField->setArrayValue(object.get(), i, *complexType);
  505. }
  506. else
  507. {
  508. memcpy(&complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  509. complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  510. }
  511. data += complexTypeSize;
  512. bytesRead += complexTypeSize;
  513. }
  514. break;
  515. }
  516. case SerializableFT_Plain:
  517. {
  518. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  519. for(int i = 0; i < arrayNumElems; i++)
  520. {
  521. UINT32 typeSize = fieldSize;
  522. if(hasDynamicSize)
  523. memcpy(&typeSize, data, sizeof(UINT32));
  524. if(curField != nullptr)
  525. curField->arrayElemFromBuffer(object.get(), i, data);
  526. data += typeSize;
  527. bytesRead += typeSize;
  528. }
  529. break;
  530. }
  531. default:
  532. BS_EXCEPT(InternalErrorException,
  533. "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) +
  534. ", Is array: " + toString(isArray));
  535. }
  536. }
  537. else
  538. {
  539. switch(fieldType)
  540. {
  541. case SerializableFT_ReflectablePtr:
  542. {
  543. RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField);
  544. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  545. {
  546. BS_EXCEPT(InternalErrorException,
  547. "Error decoding data.");
  548. }
  549. int objectId = 0;
  550. memcpy(&objectId, data, COMPLEX_TYPE_FIELD_SIZE);
  551. data += COMPLEX_TYPE_FIELD_SIZE;
  552. bytesRead += COMPLEX_TYPE_FIELD_SIZE;
  553. if(curField != nullptr)
  554. {
  555. auto findObj = mObjectMap.find(objectId);
  556. if(findObj == mObjectMap.end())
  557. {
  558. if(objectId != 0)
  559. LOGWRN("When deserializing, object ID: " + toString(objectId) + " was found but no such object was contained in the file.");
  560. curField->setValue(object.get(), nullptr);
  561. }
  562. else
  563. {
  564. ObjectToDecode& objToDecode = findObj->second;
  565. bool needsDecoding = (curField->getFlags() & RTTI_Flag_WeakRef) == 0 && !objToDecode.isDecoded;
  566. if(needsDecoding)
  567. {
  568. UINT32 objectBytesRead = objToDecode.locationInFile;
  569. decodeInternal(objToDecode.object, objToDecode.locationInBuffer, dataLength, objectBytesRead);
  570. objToDecode.isDecoded = true;
  571. }
  572. curField->setValue(object.get(), objToDecode.object);
  573. }
  574. }
  575. break;
  576. }
  577. case SerializableFT_Reflectable:
  578. {
  579. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  580. if((bytesRead + COMPLEX_TYPE_FIELD_SIZE) > dataLength)
  581. {
  582. BS_EXCEPT(InternalErrorException,
  583. "Error decoding data.");
  584. }
  585. int complexTypeSize = 0;
  586. if(curField != nullptr)
  587. {
  588. std::shared_ptr<IReflectable> complexType = complexTypeFromBuffer(curField, data, &complexTypeSize);
  589. curField->setValue(object.get(), *complexType);
  590. }
  591. else
  592. {
  593. memcpy(&complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  594. complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  595. }
  596. data += complexTypeSize;
  597. bytesRead += complexTypeSize;
  598. break;
  599. }
  600. case SerializableFT_Plain:
  601. {
  602. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  603. UINT32 typeSize = fieldSize;
  604. if(hasDynamicSize)
  605. memcpy(&typeSize, data, sizeof(UINT32));
  606. if(curField != nullptr)
  607. curField->fromBuffer(object.get(), data);
  608. data += typeSize;
  609. bytesRead += typeSize;
  610. break;
  611. }
  612. case SerializableFT_DataBlock:
  613. {
  614. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  615. if((bytesRead + DATA_BLOCK_TYPE_FIELD_SIZE) > dataLength)
  616. {
  617. BS_EXCEPT(InternalErrorException,
  618. "Error decoding data.");
  619. }
  620. // Data block size
  621. UINT32 dataBlockSize = 0;
  622. memcpy(&dataBlockSize, data, DATA_BLOCK_TYPE_FIELD_SIZE);
  623. data += DATA_BLOCK_TYPE_FIELD_SIZE;
  624. bytesRead += DATA_BLOCK_TYPE_FIELD_SIZE;
  625. if((bytesRead + dataBlockSize) > dataLength)
  626. {
  627. BS_EXCEPT(InternalErrorException,
  628. "Error decoding data.");
  629. }
  630. // Data block data
  631. if(curField != nullptr)
  632. {
  633. UINT8* dataCopy = curField->allocate(object.get(), dataBlockSize); // TODO - Low priority. I need to read files better, so I
  634. memcpy(dataCopy, data, dataBlockSize); // can just pass the buffer pointer directly without copying (possibly large amounts of data)
  635. ManagedDataBlock value(dataCopy, dataBlockSize); // Not managed because I assume the owner class will decide whether to delete the data or keep it
  636. curField->setValue(object.get(), value);
  637. }
  638. data += dataBlockSize;
  639. bytesRead += dataBlockSize;
  640. break;
  641. }
  642. default:
  643. BS_EXCEPT(InternalErrorException,
  644. "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) +
  645. ", Is array: " + toString(isArray));
  646. }
  647. }
  648. }
  649. moreObjectsToProcess = false;
  650. exit:
  651. // Finish serialization (in reverse order then it was started)
  652. if(object != nullptr)
  653. {
  654. Stack<RTTITypeBase*> typesToProcess;
  655. RTTITypeBase* currentType = object->getRTTI();
  656. while(currentType != nullptr)
  657. {
  658. typesToProcess.push(currentType);
  659. currentType = currentType->getBaseClass();
  660. }
  661. while(!typesToProcess.empty())
  662. {
  663. currentType = typesToProcess.top();
  664. typesToProcess.pop();
  665. currentType->onDeserializationEnded(object.get());
  666. }
  667. }
  668. return moreObjectsToProcess;
  669. }
  670. // TODO - This needs serious fixing, it doesn't account for all properties
  671. UINT32 BinarySerializer::getObjectSize(IReflectable* object)
  672. {
  673. if(object == nullptr)
  674. return 0;
  675. UINT32 objectSize = 0;
  676. RTTITypeBase* si = object->getRTTI();
  677. do
  678. {
  679. // Object ID + type data
  680. objectSize += sizeof(ObjectMetaData);
  681. int numFields = si->getNumFields();
  682. for(int i = 0; i < numFields; i++)
  683. {
  684. RTTIField* curGenericField = si->getField(i);
  685. // Field meta data
  686. objectSize += sizeof(UINT32);
  687. if(curGenericField->mIsVectorType)
  688. {
  689. UINT32 arrayNumElems = curGenericField->getArraySize(object);
  690. // Num array elems
  691. objectSize += sizeof(UINT32);
  692. switch(curGenericField->mType)
  693. {
  694. case SerializableFT_ReflectablePtr:
  695. {
  696. objectSize += sizeof(UINT32) * arrayNumElems;
  697. break;
  698. }
  699. case SerializableFT_Reflectable:
  700. {
  701. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  702. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  703. {
  704. IReflectable& childObject = curField->getArrayValue(object, arrIdx);
  705. objectSize += sizeof(UINT32); // Complex type size
  706. objectSize += getObjectSize(&childObject);
  707. }
  708. break;
  709. }
  710. case SerializableFT_Plain:
  711. {
  712. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  713. for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++)
  714. {
  715. UINT32 typeSize = 0;
  716. if(curField->hasDynamicSize())
  717. typeSize = curField->getArrayElemDynamicSize(object, arrIdx);
  718. else
  719. typeSize = curField->getTypeSize();
  720. objectSize += typeSize;
  721. }
  722. break;
  723. }
  724. default:
  725. BS_EXCEPT(InternalErrorException,
  726. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  727. ", Is array: " + toString(curGenericField->mIsVectorType));
  728. }
  729. }
  730. else
  731. {
  732. switch(curGenericField->mType)
  733. {
  734. case SerializableFT_ReflectablePtr:
  735. {
  736. objectSize += sizeof(UINT32);
  737. break;
  738. }
  739. case SerializableFT_Reflectable:
  740. {
  741. RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField);
  742. IReflectable& childObject = curField->getValue(object);
  743. objectSize += sizeof(UINT32); // Complex type size
  744. objectSize += getObjectSize(&childObject);
  745. break;
  746. }
  747. case SerializableFT_Plain:
  748. {
  749. RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField);
  750. UINT32 typeSize = 0;
  751. if(curField->hasDynamicSize())
  752. typeSize = curField->getDynamicSize(object);
  753. else
  754. typeSize = curField->getTypeSize();
  755. objectSize += typeSize;
  756. break;
  757. }
  758. case SerializableFT_DataBlock:
  759. {
  760. RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField);
  761. ManagedDataBlock value = curField->getValue(object);
  762. // Data block size
  763. UINT32 dataBlockSize = value.getSize();
  764. objectSize += sizeof(UINT32) + dataBlockSize;
  765. break;
  766. }
  767. default:
  768. BS_EXCEPT(InternalErrorException,
  769. "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) +
  770. ", Is array: " + toString(curGenericField->mIsVectorType));
  771. }
  772. }
  773. }
  774. si = si->getBaseClass();
  775. } while (si != nullptr);
  776. return objectSize;
  777. }
  778. UINT32 BinarySerializer::encodeFieldMetaData(UINT16 id, UINT8 size, bool array, SerializableFieldType type, bool hasDynamicSize)
  779. {
  780. // If O == 0 - Meta contains field information (Encoded using this method)
  781. //// Encoding: IIII IIII IIII IIII SSSS SSSS xxYP DCAO
  782. //// I - Id
  783. //// S - Size
  784. //// C - Complex
  785. //// A - Array
  786. //// D - Data block
  787. //// P - Complex ptr
  788. //// O - Object descriptor
  789. //// Y - Plain field has dynamic size
  790. return (id << 16 | size << 8 |
  791. (array ? 0x02 : 0) |
  792. ((type == SerializableFT_DataBlock) ? 0x04 : 0) |
  793. ((type == SerializableFT_Reflectable) ? 0x08 : 0) |
  794. ((type == SerializableFT_ReflectablePtr) ? 0x10 : 0) |
  795. (hasDynamicSize ? 0x20 : 0)); // TODO - Low priority. Technically I could encode this much more tightly, and use var-ints for ID
  796. }
  797. void BinarySerializer::decodeFieldMetaData(UINT32 encodedData, UINT16& id, UINT8& size, bool& array, SerializableFieldType& type, bool& hasDynamicSize)
  798. {
  799. if(isObjectMetaData(encodedData))
  800. {
  801. BS_EXCEPT(InternalErrorException,
  802. "Meta data represents an object description but is trying to be decoded as a field descriptor.");
  803. }
  804. hasDynamicSize = (encodedData & 0x20) != 0;
  805. if((encodedData & 0x10) != 0)
  806. type = SerializableFT_ReflectablePtr;
  807. else if((encodedData & 0x08) != 0)
  808. type = SerializableFT_Reflectable;
  809. else if((encodedData & 0x04) != 0)
  810. type = SerializableFT_DataBlock;
  811. else
  812. type = SerializableFT_Plain;
  813. array = (encodedData & 0x02) != 0;
  814. size = (UINT8)((encodedData >> 8) & 0xFF);
  815. id = (UINT16)((encodedData >> 16) & 0xFFFF);
  816. }
  817. BinarySerializer::ObjectMetaData BinarySerializer::encodeObjectMetaData(UINT32 objId, UINT32 objTypeId, bool isBaseClass)
  818. {
  819. // If O == 1 - Meta contains object instance information (Encoded using encodeObjectMetaData)
  820. //// Encoding: SSSS SSSS SSSS SSSS xxxx xxxx xxxx xxBO
  821. //// S - Size of the object identifier
  822. //// O - Object descriptor
  823. //// B - Base class indicator
  824. if(objId > 1073741823)
  825. {
  826. BS_EXCEPT(InvalidParametersException, "Object ID is larger than we can store (max 30 bits): " + toString(objId));
  827. }
  828. ObjectMetaData metaData;
  829. metaData.objectMeta = (objId << 2) | (isBaseClass ? 0x02 : 0) | 0x01;
  830. metaData.typeId = objTypeId;
  831. return metaData;
  832. }
  833. void BinarySerializer::decodeObjectMetaData(BinarySerializer::ObjectMetaData encodedData, UINT32& objId, UINT32& objTypeId, bool& isBaseClass)
  834. {
  835. if(!isObjectMetaData(encodedData.objectMeta))
  836. {
  837. BS_EXCEPT(InternalErrorException,
  838. "Meta data represents a field description but is trying to be decoded as an object descriptor.");
  839. }
  840. objId = (encodedData.objectMeta >> 2) & 0x3FFFFFFF;
  841. isBaseClass = (encodedData.objectMeta & 0x02) != 0;
  842. objTypeId = encodedData.typeId;
  843. }
  844. bool BinarySerializer::isObjectMetaData(UINT32 encodedData)
  845. {
  846. return ((encodedData & 0x01) != 0);
  847. }
  848. UINT8* BinarySerializer::complexTypeToBuffer(IReflectable* object, UINT8* buffer, UINT32& bufferLength,
  849. int* bytesWritten, std::function<UINT8*(UINT8*, int, UINT32&)> flushBufferCallback)
  850. {
  851. static const UINT32 COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  852. int complexTypeSize = 0;
  853. if(object != nullptr)
  854. complexTypeSize = getObjectSize(object);
  855. COPY_TO_BUFFER(&complexTypeSize, COMPLEX_TYPE_FIELD_SIZE)
  856. if(object != nullptr)
  857. return encodeInternal(object, 0, buffer, bufferLength, bytesWritten, flushBufferCallback);
  858. return buffer;
  859. }
  860. std::shared_ptr<IReflectable> BinarySerializer::complexTypeFromBuffer(RTTIReflectableFieldBase* field, UINT8* data, int* complexTypeSize)
  861. {
  862. static const int COMPLEX_TYPE_FIELD_SIZE = 4; // Size of the field storing the size of a child complex type
  863. memcpy(complexTypeSize, data, COMPLEX_TYPE_FIELD_SIZE);
  864. data += COMPLEX_TYPE_FIELD_SIZE;
  865. std::shared_ptr<IReflectable> emptyObject = nullptr;
  866. if(*complexTypeSize > 0)
  867. {
  868. emptyObject = field->newObject();
  869. UINT32 dummy = 0;
  870. decodeInternal(emptyObject, data, *complexTypeSize, dummy);
  871. }
  872. *complexTypeSize += COMPLEX_TYPE_FIELD_SIZE;
  873. return emptyObject;
  874. }
  875. UINT8* BinarySerializer::dataBlockToBuffer(UINT8* data, UINT32 size, UINT8* buffer, UINT32& bufferLength, int* bytesWritten,
  876. std::function<UINT8*(UINT8* buffer, int bytesWritten, UINT32& newBufferSize)> flushBufferCallback)
  877. {
  878. UINT32 remainingSize = size;
  879. while (remainingSize > 0)
  880. {
  881. UINT32 remainingSpaceInBuffer = bufferLength - *bytesWritten;
  882. if (remainingSize <= remainingSpaceInBuffer)
  883. {
  884. COPY_TO_BUFFER(data, remainingSize);
  885. remainingSize = 0;
  886. }
  887. else
  888. {
  889. memcpy(buffer, data, remainingSpaceInBuffer);
  890. buffer += remainingSpaceInBuffer;
  891. *bytesWritten += remainingSpaceInBuffer;
  892. data += remainingSpaceInBuffer;
  893. remainingSize -= remainingSpaceInBuffer;
  894. mTotalBytesWritten += *bytesWritten;
  895. buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength);
  896. if (buffer == nullptr || bufferLength == 0)
  897. return nullptr;
  898. *bytesWritten = 0;
  899. }
  900. }
  901. return buffer;
  902. }
  903. UINT32 BinarySerializer::findOrCreatePersistentId(IReflectable* object)
  904. {
  905. void* ptrAddress = (void*)object;
  906. auto findIter = mObjectAddrToId.find(ptrAddress);
  907. if(findIter != mObjectAddrToId.end())
  908. return findIter->second;
  909. UINT32 objId = mLastUsedObjectId++;
  910. mObjectAddrToId.insert(std::make_pair(ptrAddress, objId));
  911. return objId;
  912. }
  913. UINT32 BinarySerializer::registerObjectPtr(std::shared_ptr<IReflectable> object)
  914. {
  915. if(object == nullptr)
  916. return 0;
  917. void* ptrAddress = (void*)object.get();
  918. auto iterFind = mObjectAddrToId.find(ptrAddress);
  919. if(iterFind == mObjectAddrToId.end())
  920. {
  921. UINT32 objId = findOrCreatePersistentId(object.get());
  922. mObjectsToEncode.push_back(ObjectToEncode(objId, object));
  923. mObjectAddrToId.insert(std::make_pair(ptrAddress, objId));
  924. return objId;
  925. }
  926. return iterFind->second;
  927. }
  928. }
  929. #undef COPY_TO_BUFFER