BsCoreObject.cpp 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. #include "BsCoreObject.h"
  2. #include "BsCoreThread.h"
  3. #include "BsCoreObjectManager.h"
  4. #include "BsCoreThreadAccessor.h"
  5. #include "BsDebug.h"
  6. using namespace std::placeholders;
  7. namespace BansheeEngine
  8. {
  9. BS_STATIC_THREAD_SYNCHRONISER_CLASS_INSTANCE(mCoreGpuObjectLoadedCondition, CoreObject)
  10. BS_STATIC_MUTEX_CLASS_INSTANCE(mCoreGpuObjectLoadedMutex, CoreObject)
  11. CoreObject::CoreObject(bool initializeOnRenderThread)
  12. : mFlags(0), mInternalID(0), mCoreDirtyFlags(0xFFFFFFFF)
  13. {
  14. mInternalID = CoreObjectManager::instance().registerObject(this);
  15. mFlags = initializeOnRenderThread ? mFlags | CGO_INIT_ON_CORE_THREAD : mFlags;
  16. }
  17. CoreObject::~CoreObject()
  18. {
  19. if(isInitialized())
  20. {
  21. // Object must be released with destroy() otherwise engine can still try to use it, even if it was destructed
  22. // (e.g. if an object has one of its methods queued in a command queue, and is destructed, you will be accessing invalid memory)
  23. BS_EXCEPT(InternalErrorException, "Destructor called but object is not destroyed. This will result in nasty issues.");
  24. }
  25. #if BS_DEBUG_MODE
  26. if(!mThis.expired())
  27. {
  28. BS_EXCEPT(InternalErrorException, "Shared pointer to this object still has active references but " \
  29. "the object is being deleted? You shouldn't delete CoreObjects manually.");
  30. }
  31. #endif
  32. CoreObjectManager::instance().unregisterObject(this);
  33. }
  34. void CoreObject::destroy()
  35. {
  36. if(requiresInitOnCoreThread())
  37. {
  38. setScheduledToBeDeleted(true);
  39. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  40. mThis.lock()->destroy_internal();
  41. else
  42. queueDestroyGpuCommand(mThis.lock());
  43. }
  44. else
  45. {
  46. destroy_internal();
  47. }
  48. }
  49. void CoreObject::destroy_internal()
  50. {
  51. #if BS_DEBUG_MODE
  52. if(!isInitialized())
  53. BS_EXCEPT(InternalErrorException, "Trying to destroy an object that is already destroyed (or it never was initialized).");
  54. #endif
  55. mCoreSpecific = nullptr;
  56. setIsInitialized(false);
  57. }
  58. void CoreObject::initialize()
  59. {
  60. #if BS_DEBUG_MODE
  61. if(isInitialized() || isScheduledToBeInitialized())
  62. BS_EXCEPT(InternalErrorException, "Trying to initialize an object that is already initialized.");
  63. #endif
  64. mCoreSpecific = createCore();
  65. if(requiresInitOnCoreThread())
  66. {
  67. setScheduledToBeInitialized(true);
  68. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  69. mThis.lock()->initialize_internal();
  70. else
  71. queueInitializeGpuCommand(mThis.lock());
  72. }
  73. else
  74. {
  75. initialize_internal();
  76. }
  77. }
  78. void CoreObject::initialize_internal()
  79. {
  80. if (mCoreSpecific != nullptr)
  81. mCoreSpecific->initialize();
  82. if(requiresInitOnCoreThread())
  83. {
  84. {
  85. BS_LOCK_MUTEX(mCoreGpuObjectLoadedMutex);
  86. setIsInitialized(true);
  87. }
  88. setScheduledToBeInitialized(false);
  89. BS_THREAD_NOTIFY_ALL(mCoreGpuObjectLoadedCondition);
  90. }
  91. else
  92. {
  93. setIsInitialized(true);
  94. }
  95. }
  96. void CoreObject::synchronize()
  97. {
  98. if(!isInitialized())
  99. {
  100. if(requiresInitOnCoreThread())
  101. {
  102. #if BS_DEBUG_MODE
  103. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  104. BS_EXCEPT(InternalErrorException, "You cannot call this method on the core thread. It will cause a deadlock!");
  105. #endif
  106. BS_LOCK_MUTEX_NAMED(mCoreGpuObjectLoadedMutex, lock);
  107. while(!isInitialized())
  108. {
  109. if(!isScheduledToBeInitialized())
  110. BS_EXCEPT(InternalErrorException, "Attempting to wait until initialization finishes but object is not scheduled to be initialized.");
  111. BS_THREAD_WAIT(mCoreGpuObjectLoadedCondition, mCoreGpuObjectLoadedMutex, lock);
  112. }
  113. }
  114. else
  115. {
  116. BS_EXCEPT(InternalErrorException, "Attempting to wait until initialization finishes but object is not scheduled to be initialized.");
  117. }
  118. }
  119. }
  120. void CoreObject::_setThisPtr(std::shared_ptr<CoreObject> ptrThis)
  121. {
  122. mThis = ptrThis;
  123. }
  124. void CoreObject::_deleteDelayedInternal(CoreObject* obj)
  125. {
  126. assert(obj != nullptr);
  127. // This method usually gets called automatically by the shared pointer when all references are released. The process:
  128. // - If the object wasn't initialized delete it right away
  129. // - Otherwise:
  130. // - We re-create the reference to the object by setting mThis pointer
  131. // - We queue the object to be destroyed so all of its GPU resources may be released on the core thread
  132. // - destroy() makes sure it keeps a reference of mThis so object isn't deleted
  133. // - Once the destroy() finishes the reference is removed and the default shared_ptr deleter is called
  134. #if BS_DEBUG_MODE
  135. if(obj->isScheduledToBeInitialized())
  136. {
  137. BS_EXCEPT(InternalErrorException, "Object scheduled to be initialized, yet it's being deleted. " \
  138. "By design objects queued in the command queue should always have a reference count >= 1, therefore never be deleted " \
  139. "while still in the queue.");
  140. }
  141. #endif
  142. }
  143. void CoreObject::queueGpuCommand(std::shared_ptr<CoreObject>& obj, std::function<void()> func)
  144. {
  145. // We call another internal method and go through an additional layer of abstraction in order to keep an active
  146. // reference to the obj (saved in the bound function).
  147. // We could have called the function directly using "this" pointer but then we couldn't have used a shared_ptr for the object,
  148. // in which case there is a possibility that the object would be released and deleted while still being in the command queue.
  149. gCoreAccessor().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  150. }
  151. AsyncOp CoreObject::queueReturnGpuCommand(std::shared_ptr<CoreObject>& obj, std::function<void(AsyncOp&)> func)
  152. {
  153. // See queueGpuCommand
  154. return gCoreAccessor().queueReturnCommand(std::bind(&CoreObject::executeReturnGpuCommand, obj, func, _1));
  155. }
  156. void CoreObject::queueInitializeGpuCommand(std::shared_ptr<CoreObject>& obj)
  157. {
  158. std::function<void()> func = std::bind(&CoreObject::initialize_internal, obj.get());
  159. CoreThread::instance().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  160. }
  161. void CoreObject::queueDestroyGpuCommand(std::shared_ptr<CoreObject>& obj)
  162. {
  163. std::function<void()> func = std::bind(&CoreObject::destroy_internal, obj.get());
  164. gCoreAccessor().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  165. }
  166. void CoreObject::executeGpuCommand(std::shared_ptr<CoreObject> obj, std::function<void()> func)
  167. {
  168. volatile std::shared_ptr<CoreObject> objParam = obj; // Makes sure obj isn't optimized out?
  169. func();
  170. }
  171. void CoreObject::executeReturnGpuCommand(std::shared_ptr<CoreObject> obj, std::function<void(AsyncOp&)> func, AsyncOp& op)
  172. {
  173. volatile std::shared_ptr<CoreObject> objParam = obj; // Makes sure obj isn't optimized out?
  174. func(op);
  175. }
  176. }