TiledDeferredImageBasedLighting.bsl 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. mixin ReflProbeAccumulatorIndexed;
  15. featureset = HighEnd;
  16. variations
  17. {
  18. MSAA_COUNT = { 1, 2, 4, 8 };
  19. };
  20. code
  21. {
  22. [internal]
  23. cbuffer Params : register(b0)
  24. {
  25. uint2 gFramebufferSize;
  26. }
  27. #if MSAA_COUNT > 1
  28. Texture2DMS<float4> gInColor;
  29. RWBuffer<float4> gOutput;
  30. Texture2D gMSAACoverage;
  31. uint getLinearAddress(uint2 coord, uint sampleIndex)
  32. {
  33. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  34. }
  35. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  36. {
  37. uint idx = getLinearAddress(coord, sampleIndex);
  38. gOutput[idx] = color;
  39. }
  40. #else
  41. Texture2D<float4> gInColor;
  42. RWTexture2D<float4> gOutput;
  43. #endif
  44. groupshared uint sTileMinZ;
  45. groupshared uint sTileMaxZ;
  46. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  47. {
  48. // Note: To improve performance perhaps:
  49. // - Use halfZ (split depth range into two regions for better culling)
  50. // - Use parallel reduction instead of atomics
  51. uint sampleMinZ = 0x7F7FFFFF;
  52. uint sampleMaxZ = 0;
  53. #if MSAA_COUNT > 1
  54. [unroll]
  55. for(uint i = 0; i < MSAA_COUNT; ++i)
  56. {
  57. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  58. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  59. }
  60. #else
  61. sampleMinZ = asuint(-surfaceData[0].depth);
  62. sampleMaxZ = asuint(-surfaceData[0].depth);
  63. #endif
  64. // Set initial values
  65. if(threadIndex == 0)
  66. {
  67. sTileMinZ = 0x7F7FFFFF;
  68. sTileMaxZ = 0;
  69. }
  70. GroupMemoryBarrierWithGroupSync();
  71. // Determine minimum and maximum depth values for a tile
  72. InterlockedMin(sTileMinZ, sampleMinZ);
  73. InterlockedMax(sTileMaxZ, sampleMaxZ);
  74. GroupMemoryBarrierWithGroupSync();
  75. minTileZ = -asfloat(sTileMinZ);
  76. maxTileZ = -asfloat(sTileMaxZ);
  77. }
  78. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  79. {
  80. uint2 pixelPos = tileId * TILE_SIZE;
  81. // OpenGL uses lower left for window space origin
  82. #ifdef OPENGL
  83. pixelPos.y = gFramebufferSize.y - pixelPos.y;
  84. #endif
  85. // Convert thread XY coordinates to NDC coordinates
  86. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  87. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  88. float3 ndcMin;
  89. float3 ndcMax;
  90. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  91. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  92. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  93. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  94. float flipY = -sign(gMatProj[1][1]);
  95. ndcMin.y *= flipY;
  96. ndcMax.y *= flipY;
  97. ndcMin.z = convertToNDCZ(viewZMin);
  98. ndcMax.z = convertToNDCZ(viewZMax);
  99. float4 corner[8];
  100. // Far
  101. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  102. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  103. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  104. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  105. // Near
  106. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  107. corner[5] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMin.z, 1.0f));
  108. corner[6] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMin.z, 1.0f));
  109. corner[7] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMin.z, 1.0f));
  110. [unroll]
  111. for(uint i = 0; i < 8; ++i)
  112. corner[i].xy /= corner[i].w;
  113. // Flip min/max because min = closest to view plane and max = furthest from view plane
  114. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  115. float3 viewMin = float3(corner[0].xy, viewZMax);
  116. float3 viewMax = float3(corner[0].xy, viewZMin);
  117. [unroll]
  118. for(uint i = 1; i < 8; ++i)
  119. {
  120. viewMin.xy = min(viewMin.xy, corner[i].xy);
  121. viewMax.xy = max(viewMax.xy, corner[i].xy);
  122. }
  123. extent = (viewMax - viewMin) * 0.5f;
  124. center = viewMin + extent;
  125. }
  126. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  127. {
  128. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  129. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  130. }
  131. float4 getLighting(uint2 pixelPos, float2 uv, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  132. {
  133. // x, y are now in clip space, z, w are in view space
  134. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  135. // z, w eliminated (since they are already in view space)
  136. // Note: Multiply by depth should be avoided if using ortographic projection
  137. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  138. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  139. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  140. float3 V = normalize(gViewOrigin - worldPosition);
  141. float3 N = surfaceData.worldNormal.xyz;
  142. float3 R = 2 * dot(V, N) * N - V;
  143. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  144. float4 existingColor;
  145. #if MSAA_COUNT > 1
  146. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  147. #else
  148. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  149. #endif
  150. float ao = gAmbientOcclusionTex.SampleLevel(gAmbientOcclusionSamp, uv, 0.0f).r;
  151. float4 ssr = gSSRTex.SampleLevel(gSSRSamp, uv, 0.0f);
  152. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  153. float4 totalLighting = existingColor;
  154. totalLighting.rgb += imageBasedSpecular;
  155. return totalLighting;
  156. }
  157. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  158. groupshared uint sNumProbes;
  159. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  160. void csmain(
  161. uint3 groupId : SV_GroupID,
  162. uint3 groupThreadId : SV_GroupThreadID,
  163. uint3 dispatchThreadId : SV_DispatchThreadID)
  164. {
  165. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  166. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  167. // Get data for all samples
  168. SurfaceData surfaceData[MSAA_COUNT];
  169. #if MSAA_COUNT > 1
  170. [unroll]
  171. for(uint i = 0; i < MSAA_COUNT; ++i)
  172. surfaceData[i] = getGBufferData(pixelPos, i);
  173. #else
  174. surfaceData[0] = getGBufferData(pixelPos);
  175. #endif
  176. // Set initial values
  177. if(threadIndex == 0)
  178. sNumProbes = 0;
  179. // Determine per-pixel minimum and maximum depth values
  180. float minTileZ, maxTileZ;
  181. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  182. // Create AABB for the current tile
  183. float3 center, extent;
  184. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  185. // Find probes overlapping the tile
  186. for (uint i = threadIndex; i < gNumProbes && i < MAX_PROBES; i += TILE_SIZE)
  187. {
  188. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  189. float probeRadius = gReflectionProbes[i].radius;
  190. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  191. {
  192. uint idx;
  193. InterlockedAdd(sNumProbes, 1U, idx);
  194. gUnsortedProbeIndices[idx] = i;
  195. }
  196. }
  197. GroupMemoryBarrierWithGroupSync();
  198. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  199. const uint numThreads = TILE_SIZE * TILE_SIZE;
  200. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  201. {
  202. int idx = gUnsortedProbeIndices[i];
  203. uint smallerCount = 0;
  204. for (uint j = 0; j < sNumProbes; j++)
  205. {
  206. int otherIdx = gUnsortedProbeIndices[j];
  207. if (otherIdx < idx)
  208. smallerCount++;
  209. }
  210. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  211. }
  212. GroupMemoryBarrierWithGroupSync();
  213. // Generate world position
  214. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  215. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  216. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  217. // Ignore pixels out of valid range
  218. if (all(dispatchThreadId.xy < viewportMax))
  219. {
  220. #if MSAA_COUNT > 1
  221. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  222. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  223. writeBufferSample(pixelPos, 0, lighting);
  224. bool doPerSampleShading = coverage > 0.5f;
  225. if(doPerSampleShading)
  226. {
  227. [unroll]
  228. for(uint i = 1; i < MSAA_COUNT; ++i)
  229. {
  230. lighting = getLighting(pixelPos, screenUv, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  231. writeBufferSample(pixelPos, i, lighting);
  232. }
  233. }
  234. else // Splat same information to all samples
  235. {
  236. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  237. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  238. // so we need to resolve all samples. Consider getting around this issue somehow.
  239. [unroll]
  240. for(uint i = 1; i < MSAA_COUNT; ++i)
  241. writeBufferSample(pixelPos, i, lighting);
  242. }
  243. #else
  244. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  245. gOutput[pixelPos] = lighting;
  246. #endif
  247. }
  248. }
  249. };
  250. };