TiledDeferredLighting.bsl 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #define USE_COMPUTE_INDICES 1
  4. #include "$ENGINE$\DirectLighting.bslinc"
  5. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. shader TiledDeferredLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin DirectLighting;
  12. mixin LightAccumulatorIndexed;
  13. mixin ReflectionCubemapCommon;
  14. mixin ImageBasedLighting;
  15. featureset = HighEnd;
  16. variations
  17. {
  18. MSAA_COUNT = { 1, 2, 4, 8 };
  19. };
  20. code
  21. {
  22. [internal]
  23. cbuffer Params
  24. {
  25. // Number of lights per type in the lights buffer
  26. // x - directional lights, y - radial lights, z - spot lights, w - total number of lights
  27. uint4 gLightCounts;
  28. // Strides between different light types in the light buffer
  29. // x - stride to radial lights, y - stride to spot lights. Directional lights are assumed to start at 0.
  30. uint2 gLightStrides;
  31. uint2 gFramebufferSize;
  32. }
  33. #if MSAA_COUNT > 1
  34. Texture2DMS<float4> gInColor;
  35. RWTexture2DArray<float4> gOutput;
  36. Texture2D gMSAACoverage;
  37. #else
  38. Texture2D<float4> gInColor;
  39. RWTexture2D<float4> gOutput;
  40. #endif
  41. groupshared uint sTileMinZ;
  42. groupshared uint sTileMaxZ;
  43. groupshared uint sNumLightsPerType[2];
  44. groupshared uint sTotalNumLights;
  45. float4 getLighting(uint2 pixelPos, float2 clipSpacePos, SurfaceData surfaceData, uint sampleIdx)
  46. {
  47. // x, y are now in clip space, z, w are in view space
  48. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  49. // z, w eliminated (since they are already in view space)
  50. // Note: Multiply by depth should be avoided if using ortographic projection
  51. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  52. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  53. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  54. uint4 lightOffsets;
  55. lightOffsets.x = gLightCounts[0];
  56. lightOffsets.y = 0;
  57. lightOffsets.z = sNumLightsPerType[0];
  58. lightOffsets.w = sTotalNumLights;
  59. float3 V = normalize(gViewOrigin - worldPosition);
  60. float3 N = surfaceData.worldNormal.xyz;
  61. float3 R = 2 * dot(V, N) * N - V;
  62. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  63. float4 existingColor;
  64. #if MSAA_COUNT > 1
  65. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  66. #else
  67. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  68. #endif
  69. return existingColor + getDirectLighting(worldPosition, V, specR, surfaceData, lightOffsets);
  70. }
  71. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  72. void csmain(
  73. uint3 groupId : SV_GroupID,
  74. uint3 groupThreadId : SV_GroupThreadID,
  75. uint3 dispatchThreadId : SV_DispatchThreadID)
  76. {
  77. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  78. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  79. // Note: To improve performance perhaps:
  80. // - Use halfZ (split depth range into two regions for better culling)
  81. // - Use parallel reduction instead of atomics
  82. // - Use AABB instead of frustum (no false positives)
  83. // - Increase tile size to 32x32 to amortize the cost of AABB calc (2x if using halfZ)
  84. // Get data for all samples, and determine per-pixel minimum and maximum depth values
  85. SurfaceData surfaceData[MSAA_COUNT];
  86. uint sampleMinZ = 0x7F7FFFFF;
  87. uint sampleMaxZ = 0;
  88. #if MSAA_COUNT > 1
  89. [unroll]
  90. for(uint i = 0; i < MSAA_COUNT; ++i)
  91. {
  92. surfaceData[i] = getGBufferData(pixelPos, i);
  93. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  94. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  95. }
  96. #else
  97. surfaceData[0] = getGBufferData(pixelPos);
  98. sampleMinZ = asuint(-surfaceData[0].depth);
  99. sampleMaxZ = asuint(-surfaceData[0].depth);
  100. #endif
  101. // Set initial values
  102. if(threadIndex == 0)
  103. {
  104. sTileMinZ = 0x7F7FFFFF;
  105. sTileMaxZ = 0;
  106. sNumLightsPerType[0] = 0;
  107. sNumLightsPerType[1] = 0;
  108. sTotalNumLights = 0;
  109. }
  110. GroupMemoryBarrierWithGroupSync();
  111. // Determine minimum and maximum depth values for a tile
  112. InterlockedMin(sTileMinZ, sampleMinZ);
  113. InterlockedMax(sTileMaxZ, sampleMaxZ);
  114. GroupMemoryBarrierWithGroupSync();
  115. float minTileZ = asfloat(sTileMinZ);
  116. float maxTileZ = asfloat(sTileMaxZ);
  117. // Create a frustum for the current tile
  118. // First determine a scale of the tile compared to the viewport
  119. float2 tileScale = gViewportRectangle.zw * rcp(float2(TILE_SIZE, TILE_SIZE));
  120. // Now we need to use that scale to scale down the frustum.
  121. // Assume a projection matrix:
  122. // A, 0, C, 0
  123. // 0, B, D, 0
  124. // 0, 0, Q, QN
  125. // 0, 0, -1, 0
  126. //
  127. // Where A is = 2*n / (r - l)
  128. // and C = (r + l) / (r - l)
  129. //
  130. // Q & QN are used for Z value which we don't need to scale. B & D are equivalent for the
  131. // Y value, we'll only consider the X values (A & C) from now on.
  132. //
  133. // Both and A and C are inversely proportional to the size of the frustum (r - l). Larger scale mean that
  134. // tiles are that much smaller than the viewport. This means as our scale increases, (r - l) decreases,
  135. // which means A & C as a whole increase. Therefore:
  136. // A' = A * tileScale.x
  137. // C' = C * tileScale.x
  138. // Aside from scaling, we also need to offset the frustum to the center of the tile.
  139. // For this we calculate the bias value which we add to the C & D factors (which control
  140. // the offset in the projection matrix).
  141. float2 tileBias = tileScale - 1 - groupId.xy * 2;
  142. // This will yield a bias ranging from [-(tileScale - 1), tileScale - 1]. Every second bias is skipped as
  143. // corresponds to a point in-between two tiles, overlapping existing frustums.
  144. float flipSign = 1.0f;
  145. // Adjust for OpenGL's upside down texture system
  146. #if OPENGL
  147. flipSign = -1;
  148. #endif
  149. float At = gMatProj[0].x * tileScale.x;
  150. float Ctt = gMatProj[0].z * tileScale.x - tileBias.x;
  151. float Bt = gMatProj[1].y * tileScale.y * flipSign;
  152. float Dtt = (gMatProj[1].z * tileScale.y + flipSign * tileBias.y) * flipSign;
  153. // Extract left/right/top/bottom frustum planes from scaled projection matrix
  154. // Note: Do this on the CPU? Since they're shared among all entries in a tile. Plus they don't change across frames.
  155. float4 frustumPlanes[6];
  156. frustumPlanes[0] = float4(At, 0.0f, gMatProj[3].z + Ctt, 0.0f);
  157. frustumPlanes[1] = float4(-At, 0.0f, gMatProj[3].z - Ctt, 0.0f);
  158. frustumPlanes[2] = float4(0.0f, -Bt, gMatProj[3].z - Dtt, 0.0f);
  159. frustumPlanes[3] = float4(0.0f, Bt, gMatProj[3].z + Dtt, 0.0f);
  160. // Normalize
  161. [unroll]
  162. for (uint i = 0; i < 4; ++i)
  163. frustumPlanes[i] *= rcp(length(frustumPlanes[i].xyz));
  164. // Generate near/far frustum planes
  165. // Note: d gets negated in plane equation, this is why its in opposite direction than it intuitively should be
  166. frustumPlanes[4] = float4(0.0f, 0.0f, -1.0f, -minTileZ);
  167. frustumPlanes[5] = float4(0.0f, 0.0f, 1.0f, maxTileZ);
  168. // Find radial & spot lights overlapping the tile
  169. for(uint type = 0; type < 2; type++)
  170. {
  171. uint lightsStart = gLightStrides[type];
  172. uint lightsEnd = lightsStart + gLightCounts[type + 1];
  173. for (uint i = threadIndex + lightsStart; i < lightsEnd && i < MAX_LIGHTS; i += TILE_SIZE * TILE_SIZE)
  174. {
  175. float4 lightPosition = mul(gMatView, float4(gLights[i].position, 1.0f));
  176. float lightRadius = gLights[i].boundRadius;
  177. // Note: The cull method can have false positives. In case of large light bounds and small tiles, it
  178. // can end up being quite a lot. Consider adding an extra heuristic to check a separating plane.
  179. bool lightInTile = true;
  180. // First check side planes as this will cull majority of the lights
  181. [unroll]
  182. for (uint j = 0; j < 4; ++j)
  183. {
  184. float dist = dot(frustumPlanes[j], lightPosition);
  185. lightInTile = lightInTile && (dist >= -lightRadius);
  186. }
  187. // Make sure to do an actual branch, since it's quite likely an entire warp will have the same value
  188. [branch]
  189. if (lightInTile)
  190. {
  191. bool inDepthRange = true;
  192. // Check near/far planes
  193. [unroll]
  194. for (uint j = 4; j < 6; ++j)
  195. {
  196. float dist = dot(frustumPlanes[j], lightPosition);
  197. inDepthRange = inDepthRange && (dist >= -lightRadius);
  198. }
  199. // In tile, add to branch
  200. [branch]
  201. if (inDepthRange)
  202. {
  203. InterlockedAdd(sNumLightsPerType[type], 1U);
  204. uint idx;
  205. InterlockedAdd(sTotalNumLights, 1U, idx);
  206. gLightIndices[idx] = i;
  207. }
  208. }
  209. }
  210. }
  211. GroupMemoryBarrierWithGroupSync();
  212. // Generate world position
  213. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  214. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  215. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  216. // Ignore pixels out of valid range
  217. if (all(dispatchThreadId.xy < viewportMax))
  218. {
  219. #if MSAA_COUNT > 1
  220. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  221. float4 lighting = getLighting(pixelPos, clipSpacePos.xy, surfaceData[0], 0);
  222. gOutput[uint3(pixelPos.xy, 0)] = lighting;
  223. bool doPerSampleShading = coverage > 0.5f;
  224. if(doPerSampleShading)
  225. {
  226. [unroll]
  227. for(uint i = 1; i < MSAA_COUNT; ++i)
  228. {
  229. lighting = getLighting(pixelPos, clipSpacePos.xy, surfaceData[i], i);
  230. gOutput[uint3(pixelPos.xy, i)] = lighting;
  231. }
  232. }
  233. else // Splat same information to all samples
  234. {
  235. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  236. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  237. // so we need to resolve all samples. Consider getting around this issue somehow.
  238. [unroll]
  239. for(uint i = 1; i < MSAA_COUNT; ++i)
  240. gOutput[uint3(pixelPos.xy, i)] = lighting;
  241. }
  242. #else
  243. float4 lighting = getLighting(pixelPos, clipSpacePos.xy, surfaceData[0], 0);
  244. gOutput[pixelPos] = lighting;
  245. #endif
  246. }
  247. }
  248. };
  249. };