TestMemory.cpp 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // Copyright (c) Electronic Arts Inc. All rights reserved.
  3. ///////////////////////////////////////////////////////////////////////////////
  4. #include <EAStdC/EAMemory.h>
  5. #include <EAStdC/EAString.h>
  6. #include <EAStdC/EAStopwatch.h>
  7. #include <EAStdC/EASprintf.h>
  8. #include <EAStdC/EARandom.h>
  9. #include <EAStdC/EARandomDistribution.h>
  10. #include <EAStdC/EABitTricks.h>
  11. #include <EAStdCTest/EAStdCTest.h>
  12. #include <EATest/EATest.h>
  13. #include <string.h>
  14. #include <EAStdC/EAAlignment.h>
  15. #include <EASTL/vector.h>
  16. #if defined(_MSC_VER)
  17. #pragma warning(push)
  18. #pragma warning(disable: 4996) // Function is deprecated.
  19. #pragma warning(disable: 6255) // _alloca indicates failure by raising a stack overflow exception. Consider using _malloca instead.
  20. #pragma warning(disable: 6211) // Leaking memory due to an exception. Consider using a local catch block to clean up memory.
  21. #pragma warning(disable: 6200) // Index '15' is out of valid index range '0' to '9' for non-stack buffer 'kPredefinedMemSizes'
  22. #endif
  23. // The memory we will use for testing.
  24. static uint8_t* gMem1 = NULL;
  25. static uint8_t* gMem2 = NULL;
  26. // Define expected fill values for gMem1 / gMem2.
  27. const uint8_t kByte1 = 0xaa;
  28. const uint8_t kByte2 = 0xbb;
  29. // For memcpy tests we allocate two large blocks of memory that are
  30. // of this alignment.
  31. static const size_t kBaseMemAlignment = 65536;
  32. // For memcpy tests we allocate two large blocks of memory that are
  33. // of this alignment. We will copy memory around to and from memory
  34. // segments within this block.
  35. static const size_t kBaseMemSize = 16777216; // 16 MiB
  36. // These are some predefined sizes that we test.
  37. // We also have random size testing.
  38. static const size_t kPredefinedMemSizes[] =
  39. {
  40. 0,
  41. 1,
  42. 24,
  43. 96,
  44. 200,
  45. 1024,
  46. 4096,
  47. 65536, // 64 KiB
  48. 1048576, // 1 MiB
  49. 8388608 // 8 MiB
  50. };
  51. static void TestEAAllocaHelper()
  52. {
  53. void* p = EAAlloca(32768);
  54. EA_ANALYSIS_ASSUME(p != NULL);
  55. // Try to force a reference to the memory
  56. memset(p, 0, 1);
  57. }
  58. static int TestEAAlloca()
  59. {
  60. int nErrorCount = 0;
  61. {
  62. void* p = EAAlloca(37); // It's actually possible that this could throw an exception (Microsoft) or a signal (Unix).
  63. EA_ANALYSIS_ASSUME(p != NULL);
  64. memset(p, 0, 37);
  65. }
  66. {
  67. // Call a function using alloca repeatedly to ensure the memory is returned. If memory is not released when
  68. // returning from TestEAAllocaHelper, then the test will run out of memory (or use huge amounts of virtual memory
  69. // on PC and likely crash or timeout).
  70. for (int i=0; i < 1000000; i++)
  71. {
  72. TestEAAllocaHelper();
  73. }
  74. }
  75. return nErrorCount;
  76. }
  77. static int TestEAMalloca()
  78. {
  79. int nErrorCount = 0;
  80. {
  81. void* p = EAMalloca(37);
  82. if(p)
  83. {
  84. memset(p, 0, 37);
  85. EAFreea(p);
  86. }
  87. p = EAMalloca(EAMALLOCA_THRESHOLD * 2); // Allocate something that's too large for alloca.
  88. if(p)
  89. {
  90. memset(p, 0, EAMALLOCA_THRESHOLD * 2);
  91. EAFreea(p);
  92. }
  93. }
  94. return nErrorCount;
  95. }
  96. static int TestMemset()
  97. {
  98. using namespace EA::StdC;
  99. int nErrorCount = 0;
  100. // uint8_t* Memset8C(void* pDestination, uint8_t c, size_t count);
  101. {
  102. EA::StdC::Random r;
  103. const void* pCheck;
  104. for(size_t i = 0; i < 16; ++i)
  105. {
  106. // Randomly choose a copy size, but make sure the predifined ones are always tested.
  107. const size_t copyCount = (i < EAArrayCount(kPredefinedMemSizes) && (kPredefinedMemSizes[i] < 4096)) ? kPredefinedMemSizes[i] : r.RandomUint32Uniform(4096);
  108. const size_t copySize = copyCount * sizeof(uint8_t);
  109. for(size_t j = 0; j < 7; ++j)
  110. {
  111. const size_t offset1 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment);
  112. uint8_t* pMem1 = gMem1 + offset1;
  113. EA::StdC::Memset8C(pMem1, kByte2, copyCount); // Copy pMem2's kByte2 values over pMem1's kByte1 values.
  114. // Verify memory prior to pMem1 is unmodified.
  115. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  116. EATEST_VERIFY(pCheck == NULL);
  117. // Verify copied memory.
  118. pCheck = Memcheck8(pMem1, kByte2, copySize);
  119. EATEST_VERIFY(pCheck == NULL);
  120. // Verify memory after pMem1+copySize.
  121. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  122. EATEST_VERIFY(pCheck == NULL);
  123. // Set the memory back to its original value.
  124. memset(pMem1, kByte1, copySize);
  125. }
  126. }
  127. }
  128. // uint8_t* Memset8_128C(void* pDestination, uint8_t c, size_t uint8Count);
  129. {
  130. for(size_t i = 0; i < 50; i++)
  131. {
  132. const size_t copySize = i * 128;
  133. const size_t copyCount = copySize * sizeof(uint8_t);
  134. uint8_t* pMem1 = gMem1;
  135. const void* pCheck;
  136. EA::StdC::Memset8_128C(pMem1, kByte2, copyCount);
  137. // Verify memory prior to pMem1 is unmodified.
  138. pCheck = Memcheck8(pMem1 - 256, kByte1, 256);
  139. EATEST_VERIFY(pCheck == NULL);
  140. // Verify copied memory.
  141. pCheck = Memcheck8(pMem1, kByte2, copySize);
  142. EATEST_VERIFY(pCheck == NULL);
  143. // Verify memory after pMem1+copySize.
  144. pCheck = Memcheck8(pMem1 + copySize, kByte1, 256);
  145. EATEST_VERIFY(pCheck == NULL);
  146. // Set the memory back to its original value.
  147. memset(pMem1, kByte1, copySize);
  148. }
  149. }
  150. // uint16_t* Memset16(void* pDestination, uint16_t c, size_t count);
  151. {
  152. EA::StdC::Random r;
  153. const void* pCheck;
  154. const uint16_t kByte2_16 = ((kByte2 << 8) | (kByte2 + 1));
  155. for(size_t i = 0; i < 16; ++i)
  156. {
  157. // Randomly choose a copy count, but make sure the predifined ones are always tested.
  158. const size_t copyCount = (i < EAArrayCount(kPredefinedMemSizes) && (kPredefinedMemSizes[i] < 2048)) ? kPredefinedMemSizes[i] : r.RandomUint32Uniform(2048);
  159. const size_t copySize = copyCount * sizeof(uint16_t);
  160. for(size_t j = 0; j < 7; ++j)
  161. {
  162. const size_t offset1 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment) / sizeof(uint16_t) * sizeof(uint16_t); // Divide, then multiply.
  163. uint8_t* pMem1 = gMem1 + offset1;
  164. EA::StdC::Memset16(pMem1, kByte2_16, copyCount);
  165. // Verify memory prior to pMem1 is unmodified.
  166. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  167. EATEST_VERIFY(pCheck == NULL);
  168. // Verify copied memory.
  169. pCheck = Memcheck16(pMem1, kByte2_16, copySize);
  170. EATEST_VERIFY(pCheck == NULL);
  171. // Verify memory after pMem1+copySize.
  172. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  173. EATEST_VERIFY(pCheck == NULL);
  174. // Set the memory back to its original value.
  175. memset(pMem1, kByte1, copySize);
  176. }
  177. }
  178. }
  179. // uint32_t* Memset32(void* pDestination, uint32_t c, size_t count);
  180. {
  181. EA::StdC::Random r;
  182. const void* pCheck;
  183. const uint32_t kByte2_32 = ((kByte2 << 8) | (kByte2 + 1));
  184. for(size_t i = 0; i < 16; ++i)
  185. {
  186. // Randomly choose a copy count, but make sure the predifined ones are always tested.
  187. const size_t copyCount = (i < EAArrayCount(kPredefinedMemSizes) && (kPredefinedMemSizes[i] < 1024)) ? kPredefinedMemSizes[i] : r.RandomUint32Uniform(1024);
  188. const size_t copySize = copyCount * sizeof(uint32_t);
  189. for(size_t j = 0; j < 7; ++j)
  190. {
  191. const size_t offset1 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment) / sizeof(uint32_t) * sizeof(uint32_t); // Divide, then multiply.
  192. uint8_t* pMem1 = gMem1 + offset1;
  193. EA::StdC::Memset32(pMem1, kByte2_32, copyCount);
  194. // Verify memory prior to pMem1 is unmodified.
  195. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  196. EATEST_VERIFY(pCheck == NULL);
  197. // Verify copied memory.
  198. pCheck = Memcheck32(pMem1, kByte2_32, copySize);
  199. EATEST_VERIFY(pCheck == NULL);
  200. // Verify memory after pMem1+copySize.
  201. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  202. EATEST_VERIFY(pCheck == NULL);
  203. // Set the memory back to its original value.
  204. memset(pMem1, kByte1, copySize);
  205. }
  206. }
  207. }
  208. // uint64_t* Memset64(void* pDestination, uint64_t c, size_t count);
  209. {
  210. EA::StdC::Random r;
  211. const void* pCheck;
  212. const uint64_t kByte2_64 = ((kByte2 << 8) | (kByte2 + 1));
  213. for(size_t i = 0; i < 16; ++i)
  214. {
  215. // Randomly choose a copy count, but make sure the predifined ones are always tested.
  216. const size_t copyCount = (i < EAArrayCount(kPredefinedMemSizes) && (kPredefinedMemSizes[i] < 512)) ? kPredefinedMemSizes[i] : r.RandomUint32Uniform(512);
  217. const size_t copySize = copyCount * sizeof(uint64_t);
  218. for(size_t j = 0; j < 7; ++j)
  219. {
  220. const size_t offset1 = r.RandomUint32Uniform((uint64_t)kBaseMemAlignment) / sizeof(uint64_t) * sizeof(uint64_t); // Divide, then multiply.
  221. uint8_t* pMem1 = gMem1 + offset1;
  222. EA::StdC::Memset64(pMem1, kByte2_64, copyCount);
  223. // Verify memory prior to pMem1 is unmodified.
  224. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  225. EATEST_VERIFY(pCheck == NULL);
  226. // Verify copied memory.
  227. pCheck = Memcheck64(pMem1, kByte2_64, copySize);
  228. EATEST_VERIFY(pCheck == NULL);
  229. // Verify memory after pMem1+copySize.
  230. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  231. EATEST_VERIFY(pCheck == NULL);
  232. // Set the memory back to its original value.
  233. memset(pMem1, kByte1, copySize);
  234. }
  235. }
  236. }
  237. // void* MemsetPointer(void* pDestination, const void* const pValue, size_t count)
  238. {
  239. const size_t kBufferSize = 2000;
  240. void** const pBuffer = new void*[kBufferSize];
  241. for(size_t i = 1; i < 2000; i *= 3)
  242. {
  243. memset(pBuffer, 0, kBufferSize * sizeof(void*));
  244. void* p = MemsetPointer(pBuffer, (void*)(uintptr_t)i, i);
  245. EATEST_VERIFY(p == pBuffer);
  246. for(size_t k = 0; k < 2000; ++k)
  247. {
  248. if(k < i)
  249. EATEST_VERIFY(pBuffer[k] == (void*)(uintptr_t)i);
  250. else
  251. EATEST_VERIFY(pBuffer[k] == (void*)(uintptr_t)0);
  252. }
  253. }
  254. delete[] pBuffer;
  255. }
  256. // void* MemsetN(void* pDestination, const void* pSource, size_t sourceBytes, size_t count);
  257. {
  258. // To do: We need a more extensive test.
  259. char8_t buffer[2000];
  260. const char8_t* pattern = "012345678";
  261. size_t sl = Strlen(pattern);
  262. EATEST_VERIFY(buffer == MemsetN(buffer, pattern, sl, 2000));
  263. EATEST_VERIFY(buffer[sl] == '0' && buffer[77*sl+1] == '1');
  264. EATEST_VERIFY(buffer[sl*33+4] == '4' && buffer[123*sl+8] == '8');
  265. EATEST_VERIFY(buffer[sl*98+3] == '3' && buffer[181*sl+6] == '6');
  266. }
  267. return nErrorCount;
  268. }
  269. static int TestMemfill()
  270. {
  271. using namespace EA::StdC;
  272. int nErrorCount = 0;
  273. // void Memfill8(void* pDestination, uint8_t c, size_t byteCount);
  274. {
  275. const void* result = nullptr;
  276. const int ARR_SIZE = 4096;
  277. uint8_t buf[ARR_SIZE];
  278. void* pMem = static_cast<void*>(&buf);
  279. Memfill8(pMem, kByte1, ARR_SIZE);
  280. result = Memcheck8(pMem, kByte1, ARR_SIZE);
  281. EATEST_VERIFY(result == NULL);
  282. Memfill8(pMem, kByte2, ARR_SIZE);
  283. result = Memcheck8(pMem, kByte2, ARR_SIZE);
  284. EATEST_VERIFY(result == NULL);
  285. }
  286. // void Memfill16(void* pDestination, uint16_t c, size_t byteCount);
  287. {
  288. // Test different alignments, sizes 0 to 257, 1023 to 1026
  289. uint16_t val16 = 0x1234;
  290. uint16_t* val16Array = new uint16_t[2048 + 32]; // To consider: Would it make the code better if we created constants for these
  291. uint8_t* buf8Array = new uint8_t[4096 + 64]; // sizes, or would it instead just make this harder to follow?
  292. uint8_t* buf8Array2 = new uint8_t[4096 + 64];
  293. size_t j;
  294. EATEST_VERIFY(val16Array && buf8Array && buf8Array2);
  295. Memset16(val16Array, val16, 2048 + 32);
  296. for(int32_t i = 0; i < 4; i++)
  297. {
  298. for(j = 0; j <= 257; j++)
  299. {
  300. memset(buf8Array, 0, 4096);
  301. memset(buf8Array2, 0, 4096);
  302. Memfill16(buf8Array + i, val16, j);
  303. for(size_t k = 0; k < (j / sizeof(uint16_t) + 1); ++k)
  304. memcpy(buf8Array2 + i + (k * sizeof(uint16_t)), val16Array, j - (k * sizeof(uint16_t)));
  305. EATEST_VERIFY(memcmp(buf8Array, buf8Array2, 4096) == 0);
  306. }
  307. for(j = 1023; j <= 1026; j++)
  308. {
  309. memset(buf8Array, 0, 4096);
  310. memset(buf8Array2, 0, 4096);
  311. Memfill16(buf8Array + i, val16, j);
  312. for(size_t k = 0; k < (j / sizeof(uint16_t) + 1); ++k)
  313. memcpy(buf8Array2 + i + (k * sizeof(uint16_t)), val16Array, j - (k * sizeof(uint16_t)));
  314. EATEST_VERIFY(memcmp(buf8Array, buf8Array2, 4096) == 0);
  315. }
  316. }
  317. delete[] val16Array;
  318. delete[] buf8Array;
  319. delete[] buf8Array2;
  320. }
  321. // void Memfill24(void* pDestination, uint32_t c, size_t byteCount);
  322. {
  323. // To do.
  324. }
  325. // void Memfill32(void* pDestination, uint32_t c, size_t byteCount);
  326. {
  327. // To do.
  328. }
  329. // void Memfill64(void* pDestination, uint64_t c, size_t byteCount);
  330. {
  331. // To do.
  332. }
  333. // void MemfillSpecific(void* pDestination, const void* pSource, size_t destByteCount, size_t sourceByteCount);
  334. {
  335. // To do.
  336. }
  337. return nErrorCount;
  338. }
  339. static int TestMemclear()
  340. {
  341. using namespace EA::StdC;
  342. int nErrorCount = 0;
  343. // void MemclearC(void* pDestination, size_t n);
  344. {
  345. EA::StdC::Random r;
  346. const void* pCheck;
  347. for(size_t i = 0; i < 16; ++i)
  348. {
  349. // Randomly choose a copy size, but make sure the predefined ones are always tested.
  350. const size_t copyCount = (i < EAArrayCount(kPredefinedMemSizes) && (kPredefinedMemSizes[i] < 4096)) ? kPredefinedMemSizes[i] : r.RandomUint32Uniform(4096);
  351. const size_t copySize = copyCount * sizeof(uint8_t);
  352. for(size_t j = 0; j < 7; ++j)
  353. {
  354. const size_t offset1 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment);
  355. uint8_t* pMem1 = gMem1 + offset1;
  356. EA::StdC::MemclearC(pMem1, copyCount); // Set zero values over pMem1's kByte1 values.
  357. // Verify memory prior to pMem1 is unmodified.
  358. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  359. EATEST_VERIFY(pCheck == NULL);
  360. // Verify copied memory.
  361. pCheck = Memcheck8(pMem1, 0, copySize);
  362. EATEST_VERIFY(pCheck == NULL);
  363. // Verify memory after pMem1+copySize.
  364. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  365. EATEST_VERIFY(pCheck == NULL);
  366. // Set the memory back to its original value.
  367. memset(pMem1, kByte1, copySize);
  368. }
  369. }
  370. }
  371. return nErrorCount;
  372. }
  373. static int TestMemcheck()
  374. {
  375. using namespace EA::StdC;
  376. int nErrorCount = 0;
  377. const void* pCheck;
  378. // const void* Memcheck8(const void* p, uint8_t c, size_t byteCount);
  379. {
  380. const uint8_t bytes[5] = { 0x00, 0x01, 0x01, 0x01, 0x00 };
  381. pCheck = Memcheck8(bytes + 0, 0x00, 1);
  382. EATEST_VERIFY(pCheck == NULL);
  383. pCheck = Memcheck8(bytes + 0, 0x01, 1);
  384. EATEST_VERIFY(pCheck == bytes);
  385. pCheck = Memcheck8(bytes + 0, 0x00, 2);
  386. EATEST_VERIFY(pCheck == bytes + 1);
  387. pCheck = Memcheck8(bytes + 1, 0x01, 3);
  388. EATEST_VERIFY(pCheck == NULL);
  389. }
  390. // const void* Memcheck16(const void* p, uint16_t c, size_t byteCount);
  391. {
  392. union U16 {
  393. uint16_t c16;
  394. uint8_t c8[2];
  395. };
  396. const U16 bytes[5] = { { 0x0000 }, { 0x0001 }, { 0x0001 }, { 0x0001 }, { 0x0101 } };
  397. pCheck = Memcheck16(bytes + 0, 0x0000, 2);
  398. EATEST_VERIFY(pCheck == NULL);
  399. pCheck = Memcheck16(bytes + 0, 0x0001, 2);
  400. #ifdef EA_SYSTEM_BIG_ENDIAN
  401. EATEST_VERIFY(pCheck == bytes[0].c8 + 1);
  402. #else
  403. EATEST_VERIFY(pCheck == bytes[0].c8 + 0);
  404. #endif
  405. pCheck = Memcheck16(bytes + 1, 0x0001, 6);
  406. EATEST_VERIFY(pCheck == NULL);
  407. pCheck = Memcheck16(bytes[0].c8 + 1, 0x0001, 2);
  408. #ifdef EA_SYSTEM_BIG_ENDIAN
  409. EATEST_VERIFY(pCheck == bytes[0].c8 + 1);
  410. #else
  411. EATEST_VERIFY(pCheck == NULL); // Due to byte ordering, little-endian sees this as matching.
  412. #endif
  413. pCheck = Memcheck16(bytes[0].c8 + 1, 0x0000, 2);
  414. #ifdef EA_SYSTEM_BIG_ENDIAN
  415. EATEST_VERIFY(pCheck == NULL); // Due to byte ordering, big-endian sees this as matching.
  416. #else
  417. EATEST_VERIFY(pCheck == bytes[1].c8 + 0);
  418. #endif
  419. }
  420. // const void* Memcheck32(const void* p, uint32_t c, size_t byteCount);
  421. {
  422. union U32 {
  423. uint32_t c32;
  424. uint8_t c8[4];
  425. };
  426. const U32 bytes[5] = { { 0x00010203 }, { 0x00010203 }, { 0x00010203 }, { 0x00010203 }, { 0x00010203 } };
  427. for(int i = 0; i <= 4; ++i)
  428. {
  429. pCheck = Memcheck32(bytes[0].c8 + i, 0x00010203, 9);
  430. EATEST_VERIFY(pCheck == NULL);
  431. }
  432. for(int i = 0; i <= 4; ++i)
  433. {
  434. pCheck = Memcheck32(bytes[0].c8 + i, 0x01020300, 9);
  435. EATEST_VERIFY(pCheck != NULL);
  436. }
  437. }
  438. // const void* Memcheck64(const void* p, uint64_t c, size_t byteCount);
  439. {
  440. union U64 {
  441. uint64_t c64;
  442. uint8_t c8[8];
  443. };
  444. // Some platforms' (e.g. x86) compilers don't align 64 bit values on 64 bit boundaries. So we guarantee it here, as Memcheck64 expects it.
  445. // Additionally, some of the platforms we test for require 16 bit alignment of types, so we use that instead of 8.
  446. static EA_ALIGNED(const U64, bytes[5], 16) = { { UINT64_C(0x0001020304050607) }, { UINT64_C(0x0001020304050607) }, { UINT64_C(0x0001020304050607) }, { UINT64_C(0x0001020304050607) }, { UINT64_C(0x0001020304050607) } };
  447. for(int i = 0; i <= 8; ++i)
  448. {
  449. pCheck = Memcheck64(bytes[0].c8 + i, UINT64_C(0x0001020304050607), 18);
  450. EATEST_VERIFY(pCheck == NULL);
  451. }
  452. for(int i = 0; i <= 8; ++i)
  453. {
  454. pCheck = Memcheck64(bytes[0].c8 + i, UINT64_C(0x0102030405060700), 18);
  455. EATEST_VERIFY(pCheck != NULL);
  456. }
  457. }
  458. return nErrorCount;
  459. }
  460. static int TestMemchr()
  461. {
  462. using namespace EA::StdC;
  463. int nErrorCount = 0;
  464. { // Memchr8
  465. const char8_t* const s = "qwertyuiopASDFGHJKL:!@#$%^&*,=/";
  466. EATEST_VERIFY((char8_t*)Memchr(s, (char8_t)'q', Strlen(s)) - s == 0);
  467. EATEST_VERIFY((char8_t*)Memchr(s, (char8_t)'F', Strlen(s)) - s == 13);
  468. EATEST_VERIFY((char8_t*)Memchr(s, (char8_t)':', Strlen(s)) - s == 19);
  469. EATEST_VERIFY((char8_t*)Memchr(s, (char8_t)'&', Strlen(s)) - s == 26);
  470. }
  471. #if EASTDC_MEMCHR16_ENABLED && defined(EA_CHAR16)
  472. { // Memchr16
  473. const char16_t* const s = EA_CHAR16("qwertyuiopASDFGHJKL:!@#$%^&*,=/");
  474. EATEST_VERIFY((char16_t*)Memchr(s, (char16_t)'q', Strlen(s)) - s == 0);
  475. EATEST_VERIFY((char16_t*)Memchr(s, (char16_t)'F', Strlen(s)) - s == 13);
  476. EATEST_VERIFY((char16_t*)Memchr(s, (char16_t)':', Strlen(s)) - s == 19);
  477. EATEST_VERIFY((char16_t*)Memchr(s, (char16_t)'&', Strlen(s)) - s == 26);
  478. }
  479. #endif
  480. return nErrorCount;
  481. }
  482. static int TestMemcmp()
  483. {
  484. using namespace EA::StdC;
  485. int nErrorCount = 0;
  486. { // Memcmp8
  487. char8_t buffer1[] = "01234567a";
  488. char8_t buffer2[] = "01234567b";
  489. char8_t buffer3[] = "01234567c";
  490. EATEST_VERIFY(Memcmp(buffer1, buffer1, 9) == 0);
  491. EATEST_VERIFY(Memcmp(buffer2, buffer1, 9) > 0);
  492. EATEST_VERIFY(Memcmp(buffer3, buffer2, 9) > 0);
  493. EATEST_VERIFY(Memcmp(buffer2, buffer3, 9) < 0);
  494. EATEST_VERIFY(Memcmp(buffer1, buffer2, 9) < 0);
  495. }
  496. #if EASTDC_MEMCPY16_ENABLED
  497. { // Memcmp16
  498. char16_t buffer1[] = EA_CHAR16("01234567a");
  499. char16_t buffer2[] = EA_CHAR16("01234567b");
  500. char16_t buffer3[] = EA_CHAR16("01234567c");
  501. EATEST_VERIFY(Memcmp(buffer1, buffer1, 9) == 0);
  502. EATEST_VERIFY(Memcmp(buffer2, buffer1, 9) > 0);
  503. EATEST_VERIFY(Memcmp(buffer3, buffer2, 9) > 0);
  504. EATEST_VERIFY(Memcmp(buffer2, buffer3, 9) < 0);
  505. EATEST_VERIFY(Memcmp(buffer1, buffer2, 9) < 0);
  506. }
  507. #endif
  508. return nErrorCount;
  509. }
  510. static int TestMemmem()
  511. {
  512. using namespace EA::StdC;
  513. int nErrorCount = 0;
  514. const size_t kSize = 37;
  515. const char8_t buffer1[kSize] = "abcdefghijklmnopqrstuvwxyz0123456789";
  516. EATEST_VERIFY(Memmem(buffer1, 0, "", 0) == NULL); // An empty haystack always results in NULL, regardless of the needle.
  517. EATEST_VERIFY(Memmem(buffer1, kSize, "", 0) == buffer1); // Otherwise, an empty needle results in success.
  518. EATEST_VERIFY(Memmem(buffer1, 0, "_", 1) == NULL); //
  519. EATEST_VERIFY(Memmem("_", 1, buffer1, kSize) == NULL); // Search of a needle that is bigger than the haystack. Always failure.
  520. EATEST_VERIFY(Memmem(buffer1, kSize, "_", 1) == NULL);
  521. EATEST_VERIFY(Memmem(buffer1, kSize, buffer1, kSize) == buffer1);
  522. EATEST_VERIFY(Memmem(buffer1, kSize, "a", 1) == buffer1);
  523. EATEST_VERIFY(Memmem(buffer1, kSize, "abc", 3) == buffer1);
  524. EATEST_VERIFY(Memmem(buffer1, kSize, "bcd", 3) == buffer1 + 1);
  525. EATEST_VERIFY(Memmem(buffer1, kSize, "tuv", 3) == buffer1 + 19);
  526. EATEST_VERIFY(Memmem(buffer1, kSize, "9", 1) == buffer1 + 35);
  527. EATEST_VERIFY(Memmem(buffer1, kSize, "789", 3) == buffer1 + 33);
  528. EATEST_VERIFY(Memmem(buffer1, kSize, "9__", 3) == NULL);
  529. EATEST_VERIFY(Memmem("\1\0", 2, "\1\0", 2) != NULL);
  530. EATEST_VERIFY(Memmem("\1\1", 2, "\1\0", 2) == NULL);
  531. return nErrorCount;
  532. }
  533. static int TestMemcpy()
  534. {
  535. using namespace EA::StdC;
  536. int nErrorCount = 0;
  537. { // MemcpyC
  538. char8_t buffer1[] = " ";
  539. char8_t buffer2[] = "01234567b";
  540. EATEST_VERIFY(buffer1 == MemcpyC(buffer1, buffer2, 9));
  541. EATEST_VERIFY(Memcmp(buffer2, buffer1, 9) == 0);
  542. }
  543. #if EASTDC_MEMCPY16_ENABLED
  544. { // Memcpy16
  545. char16_t buffer1[] = EA_CHAR16(" ");
  546. char16_t buffer2[] = EA_CHAR16("01234567b");
  547. EATEST_VERIFY(buffer1 == (char16_t*)Memcpy((void*)buffer1, (void*)buffer2, 9 * sizeof(char16_t)));
  548. EATEST_VERIFY(memcmp(buffer2, buffer1, 9 * sizeof(char16_t)) == 0);
  549. }
  550. #endif
  551. { // char8_t* MemcpyC(void* pDestination, const void* pSource, size_t nByteCount);
  552. EA::StdC::Random r;
  553. const void* pCheck;
  554. for(size_t i = 0; i < EAArrayCount(kPredefinedMemSizes); ++i)
  555. {
  556. const size_t copySize = kPredefinedMemSizes[i];
  557. for(size_t j = 0; j < 7; ++j)
  558. {
  559. const size_t offset1 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment);
  560. const size_t offset2 = r.RandomUint32Uniform((uint32_t)kBaseMemAlignment);
  561. uint8_t* pMem1 = gMem1 + offset1;
  562. uint8_t* pMem2 = gMem2 + offset2;
  563. EA::StdC::MemcpyC(pMem1, pMem2, copySize); // Copy pMem2's kByte2 values over pMem1's kByte1 values.
  564. // Verify memory prior to pMem1 is unmodified.
  565. pCheck = Memcheck8(pMem1 - kBaseMemAlignment, kByte1, kBaseMemAlignment);
  566. EATEST_VERIFY(pCheck == NULL);
  567. // Verify copied memory.
  568. pCheck = Memcheck8(pMem1, kByte2, copySize);
  569. EATEST_VERIFY(pCheck == NULL);
  570. // Verify memory after pMem1+copySize.
  571. pCheck = Memcheck8(pMem1 + copySize, kByte1, kBaseMemAlignment);
  572. EATEST_VERIFY(pCheck == NULL);
  573. // Set the memory back to its original value.
  574. memset(pMem1, kByte1, copySize);
  575. }
  576. }
  577. }
  578. { // char8_t* Memcpy128(void* pDestination, const void* pSource, size_t nByteCount);
  579. EA::StdC::Stopwatch stopwatch1(EA::StdC::Stopwatch::kUnitsCPUCycles);
  580. EA::StdC::Stopwatch stopwatch2(EA::StdC::Stopwatch::kUnitsCPUCycles);
  581. EA::StdC::Stopwatch stopwatch3(EA::StdC::Stopwatch::kUnitsCPUCycles);
  582. for(int t = 0; t < 2; t++)
  583. {
  584. stopwatch1.Reset();
  585. stopwatch2.Reset();
  586. stopwatch3.Reset();
  587. for(size_t i = 0; i < 50; i++)
  588. {
  589. const size_t copySize = i * 128;
  590. const void* pCheck;
  591. uint8_t* pMem1 = gMem1;
  592. uint8_t* pMem2 = gMem2;
  593. stopwatch1.Start();
  594. EA::StdC::Memcpy128(pMem1, pMem2, copySize); // Copy pMem2's kByte2 values over pMem1's kByte1 values.
  595. stopwatch1.Stop();
  596. // Verify memory prior to pMem1 is unmodified.
  597. pCheck = Memcheck8(pMem1 - 256, kByte1, 256);
  598. EATEST_VERIFY(pCheck == NULL);
  599. // Verify copied memory.
  600. pCheck = Memcheck8(pMem1, kByte2, copySize);
  601. EATEST_VERIFY(pCheck == NULL);
  602. // Verify memory after pMem1+copySize.
  603. pCheck = Memcheck8(pMem1 + copySize, kByte1, 256);
  604. EATEST_VERIFY(pCheck == NULL);
  605. // Set the memory back to its original value.
  606. memset(pMem1, kByte1, copySize);
  607. // Compare to regular memcpy.
  608. stopwatch2.Start();
  609. memcpy(pMem1, pMem2, copySize);
  610. stopwatch2.Stop();
  611. memset(pMem1, kByte1, copySize);
  612. // Compare to regular __builtin_memcpy.
  613. stopwatch3.Start();
  614. #if defined(__GNUC__)
  615. __builtin_memcpy(pMem1, pMem2, copySize);
  616. #else
  617. memcpy(pMem1, pMem2, copySize);
  618. #endif
  619. stopwatch3.Stop();
  620. memset(pMem1, kByte1, copySize);
  621. }
  622. if(t == 1)
  623. EA::UnitTest::ReportVerbosity(1, "Memcpy128: %I64u cycles; memcpy: %I64u cycles, __builtin_memcpy: %I64u\n",
  624. stopwatch1.GetElapsedTime(), stopwatch2.GetElapsedTime(), stopwatch3.GetElapsedTime());
  625. }
  626. }
  627. { // char8_t* Memcpy128C(void* pDestination, const void* pSource, size_t nByteCount);
  628. for(size_t i = 0; i < 50; i++)
  629. {
  630. const size_t copySize = i * 128;
  631. const void* pCheck;
  632. uint8_t* pMem1 = gMem1;
  633. uint8_t* pMem2 = gMem2;
  634. EA::StdC::Memcpy128C(pMem1, pMem2, copySize); // Copy pMem2's kByte2 values over pMem1's kByte1 values.
  635. // Verify memory prior to pMem1 is unmodified.
  636. pCheck = Memcheck8(pMem1 - 256, kByte1, 256);
  637. EATEST_VERIFY(pCheck == NULL);
  638. // Verify copied memory.
  639. pCheck = Memcheck8(pMem1, kByte2, copySize);
  640. EATEST_VERIFY(pCheck == NULL);
  641. // Verify memory after pMem1+copySize.
  642. pCheck = Memcheck8(pMem1 + copySize, kByte1, 256);
  643. EATEST_VERIFY(pCheck == NULL);
  644. // Set the memory back to its original value.
  645. memset(pMem1, kByte1, copySize);
  646. }
  647. }
  648. return nErrorCount;
  649. }
  650. static int TestMemmove()
  651. {
  652. using namespace EA::StdC;
  653. int nErrorCount = 0;
  654. { // Memmove8
  655. char8_t buffer1[] = "...........";
  656. char8_t buffer2[] = ".......0123";
  657. char8_t buffer3[] = "0123.......";
  658. EATEST_VERIFY(buffer1 == MemmoveC(buffer1, buffer2, Strlen(buffer2)));
  659. EATEST_VERIFY(memcmp(buffer1, buffer2, Strlen(buffer2)) == 0);
  660. EATEST_VERIFY(memset(buffer1, (char8_t )0, Strlen(buffer1)) != NULL);
  661. EATEST_VERIFY(buffer1 == MemmoveC(buffer1, buffer2+7, Strlen(buffer2) - 7));
  662. EATEST_VERIFY(memcmp(buffer1, buffer2+7, Strlen(buffer2) - 7) == 0);
  663. EATEST_VERIFY(buffer2+5 == MemmoveC(buffer2+5, buffer2+7, Strlen(buffer2) - 7));
  664. EATEST_VERIFY(memcmp(buffer2+5, buffer1, Strlen(buffer2) - 7) == 0);
  665. EATEST_VERIFY(buffer1 == MemmoveC(buffer1, buffer3, Strlen(buffer3)));
  666. EATEST_VERIFY(buffer3+2 == MemmoveC(buffer3+2, buffer3, Strlen(buffer3) - 2));
  667. EATEST_VERIFY(memcmp(buffer3+2, buffer1, Strlen(buffer3) - 2) == 0);
  668. // To do: We need a much better test than this.
  669. }
  670. #if EASTDC_MEMCPY16_ENABLED
  671. { // Memmove16
  672. char16_t buffer1[] = EA_CHAR16("...........");
  673. char16_t buffer2[] = EA_CHAR16(".......0123");
  674. char16_t buffer3[] = EA_CHAR16("0123.......");
  675. EATEST_VERIFY(buffer1 == (char16_t*)Memmove((void*)buffer1, (void*)buffer2, Strlen(buffer2) * sizeof(char16_t)));
  676. EATEST_VERIFY(memcmp(buffer1, buffer2, Strlen(buffer2) * sizeof(char16_t)) == 0);
  677. EATEST_VERIFY(memset(buffer1, (char16_t )0, Strlen(buffer1) * sizeof(char16_t)) != NULL);
  678. EATEST_VERIFY(buffer1 == (char16_t*)Memmove((void*)buffer1, (void*)(buffer2+7), (Strlen(buffer2) - 7) * sizeof(char16_t)));
  679. EATEST_VERIFY(memcmp(buffer1, buffer2+7, (Strlen(buffer2) - 7) * sizeof(char16_t)) == 0);
  680. EATEST_VERIFY(buffer2+5 == (char16_t*)Memmove((void*)(buffer2+5), (void*)(buffer2+7), (Strlen(buffer2) - 7) * sizeof(char16_t)));
  681. EATEST_VERIFY(memcmp(buffer2+5, buffer1, (Strlen(buffer2) - 7) * sizeof(char16_t)) == 0);
  682. EATEST_VERIFY(buffer1 == (char16_t*)Memmove((void*)buffer1, (void*)buffer3, Strlen(buffer3) * sizeof(char16_t)));
  683. EATEST_VERIFY(buffer3+2 == (char16_t*)Memmove((void*)(buffer3+2), (void*)buffer3, (Strlen(buffer3) - 2) * sizeof(char16_t)));
  684. EATEST_VERIFY(memcmp(buffer3+2, buffer1, (Strlen(buffer3) - 2) * sizeof(char16_t)) == 0);
  685. }
  686. #endif
  687. return nErrorCount;
  688. }
  689. static int TestTimingSafe()
  690. {
  691. using namespace EA::StdC;
  692. int nErrorCount = 0;
  693. {
  694. // bool TimingSafeMemEqual(const void* p1, const void* p2, size_t n);
  695. // int TimingSafeMemcmp(const void* p1, const void* p2, size_t n);
  696. // bool TimingSafeMemIsClear(const void* p, size_t n);
  697. { // Basic accuracy tests.
  698. char8_t buffer1[] = "01234567a";
  699. char8_t buffer2[] = "01234567b";
  700. char8_t buffer3[] = "01234567c";
  701. char8_t buffer4[] = "\0\0\0\0\0\0\0\0\0";
  702. EATEST_VERIFY(TimingSafeMemcmp(buffer1, buffer1, 0) == Memcmp(buffer1, buffer1, 0));
  703. EATEST_VERIFY(TimingSafeMemcmp(buffer2, buffer1, 9) == Memcmp(buffer2, buffer1, 9));
  704. EATEST_VERIFY(TimingSafeMemcmp(buffer3, buffer2, 9) == Memcmp(buffer3, buffer2, 9));
  705. EATEST_VERIFY(TimingSafeMemcmp(buffer2, buffer3, 9) == Memcmp(buffer2, buffer3, 9));
  706. EATEST_VERIFY(TimingSafeMemcmp(buffer1, buffer2, 9) == Memcmp(buffer1, buffer2, 9));
  707. EATEST_VERIFY(TimingSafeMemEqual(buffer1, buffer1, 0) == (Memcmp(buffer1, buffer1, 0) == 0));
  708. EATEST_VERIFY(TimingSafeMemEqual(buffer1, buffer1, 9) == (Memcmp(buffer1, buffer1, 9) == 0));
  709. EATEST_VERIFY(TimingSafeMemEqual(buffer2, buffer1, 9) == (Memcmp(buffer2, buffer1, 9) == 0));
  710. EATEST_VERIFY(TimingSafeMemEqual(buffer3, buffer2, 9) == (Memcmp(buffer3, buffer2, 9) == 0));
  711. EATEST_VERIFY(TimingSafeMemEqual(buffer2, buffer3, 9) == (Memcmp(buffer2, buffer3, 9) == 0));
  712. EATEST_VERIFY(TimingSafeMemEqual(buffer1, buffer2, 9) == (Memcmp(buffer1, buffer2, 9) == 0));
  713. EATEST_VERIFY(TimingSafeMemIsClear(buffer1, 0) == true);
  714. EATEST_VERIFY(TimingSafeMemIsClear(buffer1, 1) == false);
  715. EATEST_VERIFY(TimingSafeMemIsClear(buffer1, 9) == false);
  716. EATEST_VERIFY(TimingSafeMemIsClear(buffer4, 1) == true);
  717. EATEST_VERIFY(TimingSafeMemIsClear(buffer4, 9) == true);
  718. }
  719. { // Timing tests.
  720. // It's not easy to fully validate the constant timing of these functions, due to the
  721. // tiny cycle count differences potentially involved. However, we can pretty easily
  722. // test extreme cases and verify that at least the basic logic of the functions are
  723. // timing constant and not optimized away by the compiler.
  724. Stopwatch stopwatch1(Stopwatch::kUnitsCPUCycles, false);
  725. Stopwatch stopwatch2(Stopwatch::kUnitsCPUCycles, false);
  726. bool success = false;
  727. eastl::vector<uint8_t> vLarge1((eastl_size_t)100000, (uint8_t)0); // Some large sized memory.
  728. eastl::vector<uint8_t> vLarge2((eastl_size_t)100000, (uint8_t)0);
  729. // We run this test multiple times because it may fail due to some execution hiccup and we want to give it
  730. // another chance. In a sense this is a bad idea because it seems to be going against what the function is
  731. // intended to be tested for, but it's impossible to truly know why something didn't execute in constant
  732. // time without looking at the executed machine code by hand.
  733. // TimingSafeMemEqual
  734. for(int i = 0; (i < 3) && !success; i++)
  735. {
  736. stopwatch1.Restart();
  737. bool bResult = TimingSafeMemEqual(vLarge1.data(), vLarge2.data(), vLarge1.size());
  738. stopwatch1.Stop();
  739. EATEST_VERIFY(bResult == true);
  740. vLarge1[0] = 1; // Change the first and last bytes. With regular memcmp this changed byte would result in memcmp returning very quickly, but we don't want that.
  741. vLarge1[vLarge1.size()-1] = 1;
  742. stopwatch2.Restart();
  743. bResult = TimingSafeMemEqual(vLarge1.data(), vLarge2.data(), vLarge1.size());
  744. stopwatch2.Stop();
  745. EATEST_VERIFY(bResult == false);
  746. success = (((stopwatch1.GetElapsedTimeFloat() - stopwatch2.GetElapsedTimeFloat()) / stopwatch1.GetElapsedTimeFloat()) < 0.25); // We give it a lot of leeway so our unit tests don't frequently fail.
  747. vLarge1[0] = 0; // Restore the changed bytes.
  748. vLarge1[vLarge1.size()-1] = 0;
  749. }
  750. EATEST_VERIFY_MSG(success, "TimingSafeMemEqual didn't seem to be able to execute in constant time.");
  751. // TimingSafeMemcmp
  752. for(int i = 0; (i < 3) && !success; i++)
  753. {
  754. stopwatch1.Restart();
  755. int iResult = TimingSafeMemcmp(vLarge1.data(), vLarge2.data(), vLarge1.size());
  756. stopwatch1.Stop();
  757. EATEST_VERIFY(iResult == 0);
  758. vLarge1[0] = 1; // Change the first and last bytes. With regular memcmp this changed byte would result in memcmp returning very quickly, but we don't want that.
  759. vLarge1[vLarge1.size()-1] = 1;
  760. stopwatch2.Restart();
  761. iResult = TimingSafeMemcmp(vLarge1.data(), vLarge2.data(), vLarge1.size());
  762. stopwatch2.Stop();
  763. EATEST_VERIFY(iResult == 1);
  764. success = ((fabsf(stopwatch1.GetElapsedTimeFloat() - stopwatch2.GetElapsedTimeFloat()) / stopwatch1.GetElapsedTimeFloat()) < 0.25); // We give it a lot of leeway so our unit tests don't frequently fail.
  765. vLarge1[0] = 0;
  766. vLarge1[vLarge1.size()-1] = 0;
  767. }
  768. EATEST_VERIFY_MSG(success, "TimingSafeMemcmp didn't seem to be able to execute in constant time.");
  769. // TimingSafeMemIsClear
  770. for(int i = 0; (i < 3) && !success; i++)
  771. {
  772. stopwatch1.Restart();
  773. bool bResult = TimingSafeMemIsClear(vLarge1.data(), vLarge1.size());
  774. stopwatch1.Stop();
  775. EATEST_VERIFY(bResult == true);
  776. vLarge1[0] = 1;
  777. vLarge1[vLarge1.size()-1] = 1;
  778. stopwatch2.Restart();
  779. bResult = TimingSafeMemIsClear(vLarge1.data(), vLarge1.size());
  780. stopwatch2.Stop();
  781. EATEST_VERIFY(bResult == false);
  782. success = ((fabsf(stopwatch1.GetElapsedTimeFloat() - stopwatch2.GetElapsedTimeFloat()) / stopwatch1.GetElapsedTimeFloat()) < 0.25); // We give it a lot of leeway so our unit tests don't frequently fail.
  783. vLarge1[0] = 0;
  784. vLarge1[vLarge1.size()-1] = 0;
  785. }
  786. EATEST_VERIFY_MSG(success, "TimingSafeMemIsClear didn't seem to be able to execute in constant time.");
  787. }
  788. }
  789. return nErrorCount;
  790. }
  791. static void TestMemcpySpeed()
  792. {
  793. using namespace EA::StdC;
  794. struct SizeOffset
  795. {
  796. size_t mSize;
  797. size_t mOffset1;
  798. size_t mOffset2;
  799. };
  800. Stopwatch s(Stopwatch::kUnitsCPUCycles);
  801. uint32_t kSeed = 0x12345678;
  802. Random r(kSeed);
  803. size_t kSizeArraySize = 512; // We don't want this too large, else we start getting a lot of cache effects.
  804. SizeOffset* sizeArray = new SizeOffset[kSizeArraySize];
  805. for(size_t i = 0; i < kSizeArraySize; ++i)
  806. {
  807. sizeArray[i].mOffset1 = (size_t)(uint32_t)RandomInt32UniformRange(r, 0, 32);
  808. sizeArray[i].mOffset2 = (size_t)(uint32_t)RandomInt32UniformRange(r, 0, 32);
  809. }
  810. ////////////////////////
  811. // Small copies
  812. for(size_t i = 0; i < kSizeArraySize; ++i)
  813. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 0, 256);
  814. s.Restart();
  815. for(size_t j = 0; j < 128; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  816. {
  817. for(size_t i = 0; i < kSizeArraySize; ++i)
  818. {
  819. const SizeOffset& so = sizeArray[i];
  820. MemcpyC(gMem1 + so.mOffset1, gMem2 + so.mOffset2, so.mSize);
  821. }
  822. }
  823. s.Stop();
  824. //Printf("%I64u\n", s.GetElapsedTime());
  825. ////////////////////////
  826. // Medium copies
  827. for(size_t i = 0; i < kSizeArraySize; ++i)
  828. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 256, 4096);
  829. s.Restart();
  830. for(size_t j = 0; j < 64; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  831. {
  832. for(size_t i = 0; i < kSizeArraySize; ++i)
  833. {
  834. const SizeOffset& so = sizeArray[i];
  835. MemcpyC(gMem1 + so.mOffset1, gMem2 + so.mOffset2, so.mSize);
  836. }
  837. }
  838. s.Stop();
  839. //Printf("%I64u\n", s.GetElapsedTime());
  840. ////////////////////////
  841. // Large copies
  842. for(size_t i = 0; i < kSizeArraySize; ++i)
  843. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 4096, 262144);
  844. s.Restart();
  845. for(size_t j = 0; j < 32; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  846. {
  847. for(size_t i = 0; i < kSizeArraySize; ++i)
  848. {
  849. const SizeOffset& so = sizeArray[i];
  850. MemcpyC(gMem1 + (so.mOffset1 * 8), gMem2 + (so.mOffset2 * 8), so.mSize); // Test with 8 byte alignments.
  851. }
  852. }
  853. s.Stop();
  854. //Printf("%I64u\n", s.GetElapsedTime());
  855. ////////////////////////
  856. // Giant copies
  857. for(size_t i = 0; i < kSizeArraySize; ++i)
  858. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 262144, 4194304);
  859. s.Restart();
  860. for(size_t j = 0; j < 16; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  861. {
  862. for(size_t i = 0; i < kSizeArraySize; ++i)
  863. {
  864. const SizeOffset& so = sizeArray[i];
  865. MemcpyC(gMem1 + (so.mOffset1 * 128), gMem2 + (so.mOffset2 * 128), so.mSize); // Test with 128 byte alignments.
  866. }
  867. }
  868. s.Stop();
  869. //Printf("%I64u\n", s.GetElapsedTime());
  870. delete[] sizeArray;
  871. }
  872. static void TestMemmoveSpeed()
  873. {
  874. using namespace EA::StdC;
  875. // To do.
  876. }
  877. static void TestMemsetSpeed()
  878. {
  879. using namespace EA::StdC;
  880. // To do.
  881. }
  882. static void TestMemclearSpeed()
  883. {
  884. using namespace EA::StdC;
  885. struct SizeOffset
  886. {
  887. size_t mSize;
  888. size_t mOffset1;
  889. };
  890. Stopwatch s(Stopwatch::kUnitsCPUCycles);
  891. uint32_t kSeed = 0x12345678;
  892. Random r(kSeed);
  893. size_t kSizeArraySize = 512; // We don't want this too large, else we start getting a lot of cache effects.
  894. SizeOffset* sizeArray = new SizeOffset[kSizeArraySize];
  895. for(size_t i = 0; i < kSizeArraySize; ++i)
  896. sizeArray[i].mOffset1 = (size_t)(uint32_t)RandomInt32UniformRange(r, 0, 32);
  897. ////////////////////////
  898. // Small clears
  899. for(size_t i = 0; i < kSizeArraySize; ++i)
  900. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 0, 256);
  901. s.Restart();
  902. for(size_t j = 0; j < 128; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  903. {
  904. for(size_t i = 0; i < kSizeArraySize; ++i)
  905. {
  906. const SizeOffset& so = sizeArray[i];
  907. MemclearC(gMem1 + so.mOffset1, so.mSize);
  908. // memset(gMem1 + so.mOffset1, 0, so.mSize);
  909. }
  910. }
  911. s.Stop();
  912. //Printf("%I64u\n", s.GetElapsedTime());
  913. ////////////////////////
  914. // Medium clears
  915. for(size_t i = 0; i < kSizeArraySize; ++i)
  916. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 256, 4096);
  917. s.Restart();
  918. for(size_t j = 0; j < 64; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  919. {
  920. for(size_t i = 0; i < kSizeArraySize; ++i)
  921. {
  922. const SizeOffset& so = sizeArray[i];
  923. MemclearC(gMem1 + so.mOffset1, so.mSize);
  924. // memset(gMem1 + so.mOffset1, 0, so.mSize);
  925. }
  926. }
  927. s.Stop();
  928. //Printf("%I64u\n", s.GetElapsedTime());
  929. ////////////////////////
  930. // Large clears
  931. for(size_t i = 0; i < kSizeArraySize; ++i)
  932. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 4096, 262144);
  933. s.Restart();
  934. for(size_t j = 0; j < 32; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  935. {
  936. for(size_t i = 0; i < kSizeArraySize; ++i)
  937. {
  938. const SizeOffset& so = sizeArray[i];
  939. MemclearC(gMem1 + (so.mOffset1 * 8), so.mSize); // Test with 8 byte alignments.
  940. // memset(gMem1 + (so.mOffset1 * 8), 0, so.mSize); // Test with 8 byte alignments.
  941. }
  942. }
  943. s.Stop();
  944. //Printf("%I64u\n", s.GetElapsedTime());
  945. ////////////////////////
  946. // Giant clears
  947. for(size_t i = 0; i < kSizeArraySize; ++i)
  948. sizeArray[i].mSize = (size_t)(uint32_t)RandomInt32UniformRange(r, 262144, 4194304);
  949. s.Restart();
  950. for(size_t j = 0; j < 16; ++j) // Do a double loop so that we can get a lot of copies done without sizeArray being so large that it starts having cache effects.
  951. {
  952. for(size_t i = 0; i < kSizeArraySize; ++i)
  953. {
  954. const SizeOffset& so = sizeArray[i];
  955. MemclearC(gMem1 + (so.mOffset1 * 128), so.mSize); // Test with 128 byte alignments.
  956. // memset(gMem1 + (so.mOffset1 * 128), 0, so.mSize); // Test with 128 byte alignments.
  957. }
  958. }
  959. s.Stop();
  960. //Printf("%I64u\n", s.GetElapsedTime());
  961. delete[] sizeArray;
  962. }
  963. int TestMemory()
  964. {
  965. EA::UnitTest::Report("TestMemory\n");
  966. int nErrorCount = 0;
  967. // Set up large aligned memory blocks for memory tests.
  968. // kBaseMemSize * 2 because we will set gMem1 to be kBaseMemSize bytes into pMem1Aligned so we can read bytes prior to the tested space.
  969. const size_t size = (kBaseMemSize * 2) + kBaseMemAlignment;
  970. uint8_t* pMem1Unaligned = new uint8_t[size];
  971. uint8_t* pMem2Unaligned = new uint8_t[size];
  972. if(pMem1Unaligned && pMem2Unaligned)
  973. {
  974. memset(pMem1Unaligned, kByte1, size);
  975. memset(pMem2Unaligned, kByte2, size);
  976. // Set gMem1/gMem2 to be kBaseMemSize bytes into pMem1Unaligned and be of alignment = kBaseMemAlignment.
  977. gMem1 = (uint8_t*)(((uintptr_t)pMem1Unaligned + kBaseMemSize + (kBaseMemAlignment - 1)) & ~(kBaseMemAlignment - 1));
  978. gMem2 = (uint8_t*)(((uintptr_t)pMem2Unaligned + kBaseMemSize + (kBaseMemAlignment - 1)) & ~(kBaseMemAlignment - 1));
  979. nErrorCount += TestEAAlloca();
  980. nErrorCount += TestEAMalloca();
  981. nErrorCount += TestMemset();
  982. nErrorCount += TestMemfill();
  983. nErrorCount += TestMemclear();
  984. nErrorCount += TestMemcheck();
  985. nErrorCount += TestMemchr();
  986. nErrorCount += TestMemcmp();
  987. nErrorCount += TestMemmem();
  988. nErrorCount += TestMemcpy();
  989. nErrorCount += TestMemmove();
  990. nErrorCount += TestTimingSafe();
  991. TestMemcpySpeed();
  992. TestMemmoveSpeed();
  993. TestMemsetSpeed();
  994. TestMemclearSpeed();
  995. EA_CACHE_PREFETCH_128(gMem1);
  996. EA_CACHE_ZERO_128(gMem1);
  997. delete[] pMem1Unaligned;
  998. delete[] pMem2Unaligned;
  999. }
  1000. // template<size_t> StaticMemory
  1001. struct MyClass{ char buffer[37]; };
  1002. EA::StdC::StaticMemory<sizeof(MyClass)> mStaticMemory;
  1003. MyClass* pClass = new(mStaticMemory.Memory()) MyClass;
  1004. memset(pClass->buffer, 0, sizeof(pClass->buffer));
  1005. EATEST_VERIFY(EA::StdC::Memcheck8(pClass->buffer, 0, sizeof(pClass->buffer)) == NULL);
  1006. return nErrorCount;
  1007. }
  1008. #if defined(_MSC_VER)
  1009. #pragma warning(pop)
  1010. #endif