| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright (c) Electronic Arts Inc. All rights reserved.
- ///////////////////////////////////////////////////////////////////////////////
- #ifdef _MSC_VER
- #pragma warning(disable: 4244) // This warning is being generated due to a bug in VC++.
- #endif
- #include <EABase/eabase.h>
- #include <EAStdC/EARandom.h>
- #include <EAStdC/EARandomDistribution.h>
- #include <EAStdCTest/EAStdCTest.h>
- #include <EATest/EATest.h>
- #include <EASTL/bitset.h>
- #ifdef _MSC_VER
- #pragma warning(push, 0)
- #pragma warning(disable: 4275) // non dll-interface class 'stdext::exception' used as base for dll-interface class 'std::bad_cast'
- #endif
- #ifndef EA_PLATFORM_ANDROID
- #include <algorithm>
- #endif
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #if defined(_MSC_VER) && defined(EA_PLATFORM_MICROSOFT)
- #include <crtdbg.h>
- #endif
- #if defined(EA_PLATFORM_WINDOWS)
- #include <Windows.h>
- #endif
- #if EASTDC_TIME_H_AVAILABLE
- #include <time.h>
- #endif
- #ifdef _MSC_VER
- #pragma warning(pop)
- #pragma warning(push)
- #pragma warning(disable: 4365) // 'argument' : conversion from 'int' to 'uint32_t', signed/unsigned mismatch
- #endif
- using namespace EA::StdC;
- // Forward declarations
- void rt_init(int binmode);
- void rt_add(void* buf, int bufl);
- void rt_end(double* r_ent, double* r_chisq, double* r_mean, double* r_montepicalc, double* r_scc);
- static int TestDieHard()
- {
- int nErrorCount(0);
- // Write out 9MB file for DieHard tests.
- #if defined(EA_PLATFORM_WINDOWS) && EA_WINAPI_FAMILY_PARTITION(EA_WINAPI_PARTITION_DESKTOP)
- if(GetAsyncKeyState(VK_SCROLL)) // If the Scroll Lock key is alive.
- {
- // Ideally we would port the DieHard code to here, but it is not well
- // written for modularity. For the time being, we write out the 9MB
- // data file that DieHard.exe can analyze. As of this writing, DieHard.exe
- // is part of the EAOS UTF Research repository.
- {
- RandomLinearCongruential randomLC;
- FILE* pFile = fopen("RandomLinearCongruentialData.txt", "w");
- if(pFile)
- {
- for(uint32_t i = 0; i < 12000000; i += 4)
- {
- const uint32_t value = randomLC.RandomUint32Uniform();
- fwrite(&value, 1, 4, pFile);
- }
- fclose(pFile);
- }
- }
- {
- RandomMersenneTwister randomMT;
- FILE* pFile = fopen("RandomMersenneTwisterData.txt", "w");
- if(pFile)
- {
- for(uint32_t i = 0; i < 12000000; i += 4)
- {
- const uint32_t value = randomMT.RandomUint32Uniform();
- fwrite(&value, 1, 4, pFile);
- }
- fclose(pFile);
- }
- }
- }
- #endif
- return nErrorCount;
- }
- namespace
- {
- #if defined(EA_PLATFORM_DESKTOP) && !defined(EA_DEBUG)
- // This exists for the purpose of testing distributions. It implements a seed that is continuously
- // increasting and thus over the course of 0x100000000 (2^32) calls to RandomUint32Uniform returns a statistically
- // even distribution of bits. Note that truly random data won't behave this way and formal tests for
- // randomness would identify this as being not random. But that's not the purpose of this class;
- // the purpose is to help test if there are distribution problems in the range and distribution adapters.
- // Note that it's important that you do 0x100000000 calls with this or else the results of it won't
- // be evenly distributed as designed.
- class FakeIncrementingRandom
- {
- public:
- FakeIncrementingRandom()
- : mnSeed(0) {}
-
- //FakeIncrementingRandom(const FakeIncrementingRandom& x)
- // : mnSeed(x.mnSeed) {}
- //FakeIncrementingRandom& operator=(const FakeIncrementingRandom& x)
- // { mnSeed = x.mnSeed; return *this; }
- //uint32_t GetSeed() const
- // { return mnSeed; }
- //void SetSeed(uint32_t nSeed)
- // { mnSeed = nSeed; }
- //uint32_t operator()(uint32_t nLimit)
- // { return EA::StdC::RandomLimit(*this, nLimit); }
- uint32_t RandomUint32Uniform()
- { return mnSeed++; }
- protected:
- uint32_t mnSeed;
- };
- #endif
- }
- // TestRandom
- // Note that thus function itself is not meant as a comprehensive
- // test for randomness. Instead this function does a basic test
- // for randomness and then optionally writes out files to disk
- // for analysis by a comprehensive tool like DieHard.
- //
- int TestRandom()
- {
- int nErrorCount(0);
- EA::UnitTest::Report("TestRandom\n");
- { // Bug report regression.
- // User Fei Jiang reports that RandomLinearCongruential::RandomUnit32Uniform(uint32_t nLimit) returns
- // different values on PS3 in debug vs. debug-opt builds with SN compiler.
- RandomLinearCongruential rlc(UINT32_C(2474210934));
- uint32_t seed = rlc.GetSeed();
- //EA::UnitTest::Report("seed: %u\n", (unsigned)seed);
- EATEST_VERIFY(seed == UINT32_C(2474210934));
- uint32_t result = rlc.RandomUint32Uniform(57);
- //EA::UnitTest::Report("result: %u\n", (unsigned)result);
- EATEST_VERIFY(result == 23); // 743483
- }
- // Load priming
- // We call a function from each generator used below to minimize
- // an loading effects on benchmarking.
- int rTemp = rand();
- EATEST_VERIFY(rTemp >= 0); // "Returns a pseudo-random integral number in the range 0 to RAND_MAX."
- RandomLinearCongruential randomLCPrimer;
- randomLCPrimer.RandomUint32Uniform();
- RandomMersenneTwister randomMTPrimer;
- randomMTPrimer.RandomUint32Uniform();
- TestDieHard();
- //#define SPEED_TESTS_ENABLED
- #ifdef SPEED_TESTS_ENABLED
- // Speed tests.
- // Results on a Pentium 4 PC were:
- // rand(): 8172 clocks.
- // RandomLinearCongruential: 4687 clocks.
- // RandomMersenneTwister: 6157 clocks.
- {
- clock_t timeStart;
- clock_t timeTotal;
- const int kIterationCount(5000000);
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)rand();
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("rand(): %d clocks.\n", (int)timeTotal);
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)(rand() % 37997);
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("rand() w/limit: %d clocks.\n", (int)timeTotal);
- RandomLinearCongruential randomLC;
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)randomLC.RandomUint32Uniform();
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("RandomLinearCongruential: %d clocks.\n", (int)timeTotal);
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)randomLC.RandomUint32Uniform(37997);
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("RandomLinearCongruential w/limit: %d clocks.\n", (int)timeTotal);
- RandomMersenneTwister randomMT;
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)randomMT.RandomUint32Uniform();
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("RandomMersenneTwister: %d clocks.\n", (int)timeTotal);
- timeStart = clock();
- for(int i(0); i < kIterationCount; i++)
- EA::UnitTest::WriteToEnsureFunctionCalled() = (int)randomMT.RandomUint32Uniform(32997);
- timeTotal = clock() - timeStart;
- EA::UnitTest::Report("RandomMersenneTwister w/limit: %d clocks.\n", (int)timeTotal);
- }
- #endif
- // Test output ranges
- { // RandomLinearCongruential test
- RandomLinearCongruential random;
- int32_t nRandom;
- double dRandom;
- for(unsigned i(0); i < 100; i++)
- {
- for(uint32_t j(5); j < (UINT32_MAX / 2); j *= 5)
- {
- uint32_t nU32 = random.RandomUint32Uniform(j);
- EATEST_VERIFY(nU32 < j);
- dRandom = random.RandomDoubleUniform((double)j);
- EATEST_VERIFY(0.0 <= dRandom && dRandom < j);
- dRandom = random.RandomDoubleUniform();
- EATEST_VERIFY(0.0 <= dRandom && dRandom < 1.0);
- }
- nRandom = Random2(random);
- EATEST_VERIFY(nRandom < 2);
- nRandom = Random4(random);
- EATEST_VERIFY(nRandom < 4);
- nRandom = Random8(random);
- EATEST_VERIFY(nRandom < 8);
- nRandom = Random16(random);
- EATEST_VERIFY(nRandom < 16);
- nRandom = Random32(random);
- EATEST_VERIFY(nRandom < 32);
- nRandom = Random64(random);
- EATEST_VERIFY(nRandom < 642);
- nRandom = Random128(random);
- EATEST_VERIFY(nRandom < 128);
- nRandom = Random256(random);
- EATEST_VERIFY(nRandom < 256);
- // RandomPowerOfTwo
- for(uint32_t k(1); k < 31; k++)
- {
- nRandom = RandomPowerOfTwo(random, k);
- EATEST_VERIFY((uint32_t)nRandom < (uint32_t)(2 << k));
- }
- // RandomInt32UniformRange
- for(int32_t nBegin(-10000); nBegin < 10000; nBegin += Random256(random))
- {
- int32_t nEnd = nBegin + 1 + Random256(random);
- int32_t iRandom = RandomInt32UniformRange(random, nBegin, nEnd);
- EATEST_VERIFY_F((iRandom >= nBegin) && (iRandom < nEnd), "RandomInt32UniformRange failure: iRandom: %I32d, nBegin: %I32d, nEnd: %I32d", iRandom, nBegin, nEnd);
- }
- // RandomDoubleUniformRange
- for(int32_t dBegin(-10000); dBegin < 10000; dBegin += Random256(random))
- {
- int32_t dEnd = dBegin + 1 + Random256(random);
- dRandom = RandomDoubleUniformRange(random, (double)dBegin, (double)dEnd);
- EATEST_VERIFY_F((dRandom >= dBegin) && (dRandom < dEnd), "RandomDoubleUniformRange failure: dRandom: %f, dBegin: %f, dEnd: %f", dRandom, (double)dBegin, (double)dEnd);
- }
- // RandomUint32WeightedChoice
- const uint32_t kLimit = 37;
- float weights[kLimit];
- for(uint32_t q(0); q < kLimit; q++)
- weights[q] = (float)RandomDoubleUniformRange(random, 0.5, 30.0);
- for(uint32_t r(0); r < 1000; r++)
- {
- uint32_t nU32 = RandomUint32WeightedChoice(random, kLimit, weights);
- EATEST_VERIFY_F(nU32 < kLimit, "RandomUint32WeightedChoice failure: nU32: %I32u, kLimit: %I32u", nU32, kLimit);
- }
- // RandomInt32GaussianRange
- for(int r(0); r < 1000; r++)
- {
- const int32_t nBegin = (int32_t)random.RandomUint32Uniform(1000);
- const int32_t nEnd = nBegin + (int32_t)random.RandomUint32Uniform(1000) + 1;
- const int32_t iRandom = RandomInt32GaussianRange(random, nBegin, nEnd);
- EATEST_VERIFY((iRandom >= nBegin) && (iRandom < nEnd));
- }
- // RandomFloatGaussianRange
- for(int r(0); r < 1000; r++)
- {
- const float fBegin = (float)random.RandomDoubleUniform(1000);
- const float fEnd = fBegin + (float)random.RandomDoubleUniform(1000) + 1.0f;
- const float fRandom = RandomFloatGaussianRange(random, fBegin, fEnd);
- EATEST_VERIFY((fRandom >= fBegin) && (fRandom < fEnd));
- }
- // RandomInt32TriangleRange
- for(int r(0); r < 1000; r++)
- {
- const int32_t nBegin = (int32_t)random.RandomUint32Uniform(1000);
- const int32_t nEnd = nBegin + (int32_t)random.RandomUint32Uniform(1000) + 1;
- const int32_t iRandom = RandomInt32TriangleRange(random, nBegin, nEnd);
- EATEST_VERIFY((iRandom >= nBegin) && (iRandom < nEnd));
- }
- // RandomFloatTriangleRange
- for(int r(0); r < 1000; r++)
- {
- const float fBegin = (float)random.RandomDoubleUniform(1000);
- const float fEnd = fBegin + (float)random.RandomDoubleUniform(1000) + 1.0f;
- const float fRandom = RandomFloatTriangleRange(random, fBegin, fEnd);
- EATEST_VERIFY((fRandom >= fBegin) && (fRandom < fEnd));
- }
- }
- }
- { // RandomInt32Poisson
- const float fMean = 5.f;
- const size_t maxK = 30;
- RandomMersenneTwister random;
- for(int i = 0; i < 1000; i++)
- {
- int32_t rn = RandomInt32Poisson(random.RandomDoubleUniform(), fMean);
- EATEST_VERIFY(rn < maxK);
- }
- }
- { // RandomLinearCongruential test
- RandomMersenneTwister random;
- int32_t nRandom;
- double dRandom;
- for(unsigned i(0); i < 1000; i++)
- {
- for(uint32_t j(5); j < UINT32_MAX / 2; j *= 5)
- {
- uint32_t nU32 = random.RandomUint32Uniform(j);
- EATEST_VERIFY(nU32 < j);
- dRandom = random.RandomDoubleUniform((double)j);
- EATEST_VERIFY(0.0 <= dRandom && dRandom < j);
- dRandom = random.RandomDoubleUniform();
- EATEST_VERIFY(0.0 <= dRandom && dRandom < 1.0);
- }
- nRandom = Random2(random);
- EATEST_VERIFY(nRandom < 2);
- nRandom = Random4(random);
- EATEST_VERIFY(nRandom < 4);
- nRandom = Random8(random);
- EATEST_VERIFY(nRandom < 8);
- nRandom = Random16(random);
- EATEST_VERIFY(nRandom < 16);
- nRandom = Random32(random);
- EATEST_VERIFY(nRandom < 32);
- nRandom = Random64(random);
- EATEST_VERIFY(nRandom < 64);
- nRandom = Random128(random);
- EATEST_VERIFY(nRandom < 128);
- nRandom = Random256(random);
- EATEST_VERIFY(nRandom < 256);
- for(uint32_t k(1); k < 31; k++)
- {
- nRandom = RandomPowerOfTwo(random, k);
- EATEST_VERIFY((uint32_t)nRandom < (uint32_t)(2 << k));
- }
- for(int nBegin(-10000); nBegin < 10000; nBegin += Random256(random))
- {
- int32_t nEnd = nBegin + 1 + Random256(random);
- int32_t iRandom = RandomInt32UniformRange(random, nBegin, nEnd);
- EATEST_VERIFY((iRandom >= nBegin) && (iRandom < nEnd));
- }
- for(int dBegin(-10000); dBegin < 10000; dBegin += Random256(random))
- {
- int32_t dEnd = dBegin + 1 + Random256(random);
- dRandom = RandomDoubleUniformRange(random, (double)dBegin, (double)dEnd);
- EATEST_VERIFY((dRandom >= dBegin) && (dRandom < dEnd));
- }
- const unsigned int kLimit = 37;
- float weights[kLimit];
- for(unsigned int q(0); q < kLimit; q++)
- weights[q] = (float)RandomDoubleUniformRange(random, 0.5, 30.0);
- for(unsigned int r(0); r < 100; r++)
- {
- uint32_t nU32 = RandomUint32WeightedChoice(random, kLimit, weights);
- EATEST_VERIFY(nU32 < kLimit);
- }
- }
- }
- //NOTICE:
- //Need Paul to look at this.
- //At times, getting values outside of the assertion range.
- #if !defined(EA_PLATFORM_IPHONE)
- // Do basic randomness testing.
- // Just because a random number generator passes known basic tests
- // doesn't mean it doesn't have a major flaw.
- { // C runtime rand() test, provided for comparison.
- int nErrorCountCRand(0); //We don't want to report these as part of our test.
- rt_init(false);
- for(int i(0); i < 100000; i++)
- {
- uint8_t nRandom = (uint8_t)(rand() & UINT8_MAX);
- rt_add(&nRandom, sizeof(nRandom));
- }
- // See the rt_end documentation for detailed explanations
- // of what each of these metrics mean.
- double r_ent, r_chisq, r_mean, r_montepicalc, r_scc;
- rt_end(&r_ent, &r_chisq, &r_mean, &r_montepicalc, &r_scc);
- if(r_ent < 7.8)
- nErrorCountCRand++;
- else if(r_chisq < 200)
- nErrorCountCRand++;
- else if(r_mean < 127.2 || r_mean > 127.9)
- nErrorCountCRand++;
- else if(r_montepicalc < 3.11 || r_montepicalc > 3.17)
- nErrorCountCRand++;
- else if(r_scc > 0.01)
- nErrorCountCRand++;
- }
- { // RandomLinearCongruential test
- RandomLinearCongruential random;
- rt_init(false);
- for(int i(0); i < 100000; i++)
- {
- uint32_t nRandom = random.RandomUint32Uniform();
- rt_add(&nRandom, sizeof(nRandom));
- }
- // See the rt_end documentation for detailed explanations
- // of what each of these metrics mean.
- double r_ent, r_chisq, r_mean, r_montepicalc, r_scc;
- rt_end(&r_ent, &r_chisq, &r_mean, &r_montepicalc, &r_scc);
- EATEST_VERIFY(r_ent >= 7.8);
- //EATEST_VERIFY(r_chisq >= 200); Disabled until we can figure out why it occasionally fails.
- //EATEST_VERIFY(r_mean >= 127.2 && r_mean < 127.9); Disabled until we can figure out why it occasionally fails.
- EATEST_VERIFY(r_montepicalc >= 3.11 && r_montepicalc < 3.17);
- EATEST_VERIFY(r_scc <= 0.01);
- }
- { // RandomMersenneTwister test
- RandomMersenneTwister random;
- rt_init(false);
- for(int i(0); i < 100000; i++)
- {
- uint32_t nRandom = random.RandomUint32Uniform();
- rt_add(&nRandom, sizeof(nRandom));
- }
- // See the rt_end documentation for detailed explanations
- // of what each of these metrics mean.
- double r_ent, r_chisq, r_mean, r_montepicalc, r_scc;
- rt_end(&r_ent, &r_chisq, &r_mean, &r_montepicalc, &r_scc);
- EATEST_VERIFY(r_ent >= 7.8);
- //EATEST_VERIFY(r_chisq >= 200); Disabled until we can figure out why it occasionally fails.
- //EATEST_VERIFY(r_mean >= 127.2 && r_mean < 127.9); Disabled until we can figure out why it occasionally fails.
- EATEST_VERIFY(r_montepicalc >= 3.11 && r_montepicalc < 3.17);
- EATEST_VERIFY(r_scc <= 0.01);
- }
- #endif
- { // RandomMersenneTwister seed serialization test.
- RandomMersenneTwister rmt;
- uint32_t seedArray[RandomMersenneTwister::kSeedArrayCount * 2];
- uint32_t rand1, rand2;
- unsigned size;
- size = rmt.GetSeed(seedArray, RandomMersenneTwister::kSeedArrayCount);
- EATEST_VERIFY(size == RandomMersenneTwister::kSeedArrayCount);
- rand1 = rmt.RandomUint32Uniform();
- rmt.RandomUint32Uniform();
- rmt.SetSeed(seedArray, size);
- rand2 = rmt.RandomUint32Uniform();
- EATEST_VERIFY(rand1 == rand2);
- size = rmt.GetSeed(seedArray, RandomMersenneTwister::kSeedArrayCount * 2);
- EATEST_VERIFY(size == RandomMersenneTwister::kSeedArrayCount);
- rand1 = rmt.RandomUint32Uniform();
- rmt.RandomUint32Uniform();
- rmt.SetSeed(seedArray, size);
- rand2 = rmt.RandomUint32Uniform();
- EATEST_VERIFY(rand1 == rand2);
- size = rmt.GetSeed(seedArray, RandomMersenneTwister::kSeedArrayCount / 2);
- EATEST_VERIFY(size == RandomMersenneTwister::kSeedArrayCount / 2);
- rand1 = rmt.RandomUint32Uniform();
- rmt.RandomUint32Uniform();
- rmt.SetSeed(seedArray, size);
- // We can't test for equality or inequality of rand1 and rand2
- // This is just a pathological test.
- size = rmt.GetSeed(seedArray, 0);
- EATEST_VERIFY(size == 0);
- rand1 = rmt.RandomUint32Uniform();
- rmt.RandomUint32Uniform();
- rmt.SetSeed(seedArray, size);
- rand2 = rmt.RandomUint32Uniform();
- EATEST_VERIFY(rand1 != rand2); // They should be different (actually one out of 4 billion times they shouldn't be) because we didn't read the entire state, but only half of it.
- }
- {
- #if defined(EA_PLATFORM_DESKTOP) && !defined(EA_DEBUG) // Do this test only on fast machines, as it's compute-intensive.
- // Range tests with FakeIncrementingRandom
- const size_t sizes[] = { 2, 5, 10 };
- eastl::vector<uint32_t> countBuckets(sizes[EAArrayCount(sizes) - 1], 0);
- for(size_t a = 0; a < EAArrayCount(sizes); a++)
- {
- size_t s = sizes[a];
- FakeIncrementingRandom fir;
- eastl::fill(countBuckets.begin(), countBuckets.end(), 0);
- for(uint64_t i = 0, iEnd = UINT64_C(0x100000000) / s * s; i < iEnd; i++)
- {
- if((i % 0x10000000) == 0)
- EA::UnitTest::Report("."); // Keepalive output.
- uint32_t b = EA::StdC::RandomLimit(fir, static_cast<uint32_t>(s));
- countBuckets[b]++;
- }
- for(eastl_size_t b = 1, c = countBuckets[0]; b < s; b++)
- {
- if(countBuckets[b] != c)
- {
- EATEST_VERIFY(countBuckets[b] == c);
- EA::UnitTest::Report("Random distribution result buckets for limit of %I32u:\n ", (uint32_t)s);
- for(eastl_size_t bb = 0, bbEnd = s; bb < bbEnd; bb++)
- EA::UnitTest::Report("%I32u%s", (uint32_t)countBuckets[bb], ((bb % 16) == 15) ? "\n" : " ");
- EA::UnitTest::Report("\n");
- break;
- }
- }
- EA::UnitTest::Report(".\n"); // Keep alive output.
- }
- #endif
- }
- // Write out files suitable for the DieHard test suite.
- // The version of DieHard that this author most recently
- // worked with requires 8404992 bytes of data in a file.
- // A copy of DieHard.exe should accompany this test.
- // Currently, you drag a file onto it to get the results
- // of the test. In the future we can implement the entire
- // test within this file. It is about 3500 lines of code
- // and would require some massaging to make it work
- // smoothly with a unit testing system.
- return nErrorCount;
- }
- ///////////////////////////////////////////////////////////////////////////////
- // Ent Chi-Squared functions
- //
- // Home:
- // http://www.fourmilab.ch/random/
- // License:
- // This software is in the public domain. Permission to use, copy, modify,
- // and distribute this software and its documentation for any purpose and
- // without fee is hereby granted, without any conditions or restrictions.
- // This software is provided "as is" without express or implied warranty.
- ///////////////////////////////////////////////////////////////////////////////
- //
- // Entropy
- // The information density of the contents of the file, expressed as a
- // number of bits per character. The results above, which resulted from
- // processing an image file compressed with JPEG, indicate that the
- // file is extremely dense in information--essentially random.
- // Hence, compression of the file is unlikely to reduce its size.
- // By contrast, the C source code of the program has entropy of about
- // 4.9 bits per character, indicating that optimal compression of the
- // file would reduce its size by 38%. [Hamming, pp. 104-108]
- //
- // Chi-square Test
- // The chi-square test is the most commonly used test for the randomness
- // of data, and is extremely sensitive to errors in pseudorandom sequence
- // generators. The chi-square distribution is calculated for the stream
- // of bytes in the file and expressed as an absolute number and a
- // percentage which indicates how frequently a truly random sequence
- // would exceed the value calculated. We interpret the percentage as the
- // degree to which the sequence tested is suspected of being non-random.
- // If the percentage is greater than 99% or less than 1%, the sequence is
- // almost certainly not random. If the percentage is between 99% and 95%
- // or between 1% and 5%, the sequence is suspect. Percentages between 90%
- // and 95% and 5% and 10% indicate the sequence is "almost suspect".
- // Note that our JPEG file, while very dense in information, is far from
- // random as revealed by the chi-square test.
- //
- // Applying this test to the output of various pseudorandom sequence
- // generators is interesting. The low-order 8 bits returned by the
- // standard Unix rand() function, for example, yields:
- // Chi square distribution for 500000 samples is 0.01, and randomly
- // would exceed this value 99.99 percent of the times.
- //
- // While an improved generator [Park & Miller] reports:
- // Chi square distribution for 500000 samples is 212.53, and randomly
- // would exceed this value 95.00 percent of the times.
- //
- // Thus, the standard Unix generator (or at least the low-order bytes
- // it returns) is unacceptably non-random, while the improved generator
- // is much better but still sufficiently non-random to cause concern for
- // demanding applications. Contrast both of these software generators
- // with the chi-square result of a genuine random sequence created by
- // timing radioactive decay events.
- // Chi square distribution for 32768 samples is 237.05, and randomly
- // would exceed this value 75.00 percent of the times.
- //
- // See [Knuth, pp. 35-40] for more information on the chi-square test.
- // An interactive chi-square calculator is available at this site.
- //
- // Arithmetic Mean
- // This is simply the result of summing the all the bytes (bits if the -b
- // option is specified) in the file and dividing by the file length.
- // If the data are close to random, this should be about 127.5 (0.5 for -b
- // option output). If the mean departs from this value, the values are
- // consistently high or low.
- //
- // Monte Carlo Value for Pi
- // Each successive sequence of six bytes is used as 24 bit X and Y
- // co-ordinates within a square. If the distance of the randomly-generated
- // point is less than the radius of a circle inscribed within the square,
- // the six-byte sequence is considered a "hit". The percentage of hits can
- // be used to calculate the value of Pi. For very large streams
- // (this approximation converges very slowly), the value will approach the
- // correct value of Pi if the sequence is close to random. A 32768 byte
- // file created by radioactive decay yielded:
- // Monte Carlo value for Pi is 3.139648438 (error 0.06 percent).
- //
- // Serial Correlation Coefficient
- // This quantity measures the extent to which each byte in the file
- // depends upon the previous byte. For random sequences, this value
- // (which can be positive or negative) will, of course, be close to zero.
- // A non-random byte stream such as a C program will yield a serial
- // correlation coefficient on the order of 0.5. Wildly predictable data
- // such as uncompressed bitmaps will exhibit serial correlation coefficients
- // approaching 1. See [Knuth, pp. 64-65] for more details.
- ///////////////////////////////////////////////////////////////////////////////
- #define RFALSE 0
- #define RTRUE 1
- #define BINARY_MODE RTRUE
- #define BYTE_MODE RFALSE
- #define MONTEN 6 /* Bytes used as Monte Carlo co-ordinates. This should be no more bits than the mantissa of your "double" floating point type. */
- #define log2of10 3.32192809488736234787
- static int binary = RFALSE; /* Treat input as a bitstream */
- static long ccount[256]; /* Bins to count occurrences of values */
- static long totalc = 0; /* Total bytes counted */
- static double prob[256]; /* Probabilities per bin for entropy */
- static int mp, sccfirst;
- static unsigned int monte[MONTEN];
- static long inmont, mcount;
- static double cexp, incirc, montex, montey, montepi, scc, sccun, sccu0, scclast, scct1, scct2, scct3, ent, chisq, datasum;
- /* LOG2 -- Calculate log to the base 2 */
- static double Local_log2(double x)
- {
- return log2of10 * log10(x);
- }
- /* RT_INIT -- Initialise random test counters. Call with BINARY_MODE or BYTE_MODE */
- void rt_init(int binmode)
- {
- int i;
- binary = binmode; /* Set binary / byte mode */
- /* Initialise for calculations */
- ent = 0.0; /* Clear entropy accumulator */
- chisq = 0.0; /* Clear Chi-Square */
- datasum = 0.0; /* Clear sum of bytes for arithmetic mean */
- mp = 0; /* Reset Monte Carlo accumulator pointer */
- mcount = 0; /* Clear Monte Carlo tries */
- inmont = 0; /* Clear Monte Carlo inside count */
- incirc = 65535.0 * 65535.0; /* In-circle distance for Monte Carlo */
- sccfirst = RTRUE; /* Mark first time for serial correlation */
- scct1 = scct2 = scct3 = 0.0; /* Clear serial correlation terms */
- incirc = pow(pow(256.0, (double) (MONTEN / 2)) - 1, 2.0);
- for (i = 0; i < 256; i++) {
- ccount[i] = 0;
- }
- totalc = 0;
- }
- /* RT_ADD -- Add one or more bytes to accumulation. */
- void rt_add(void* buf, int bufl)
- {
- unsigned char* bp =(unsigned char*)buf;
- int oc, c, bean;
- while (bean = 0, (bufl-- > 0))
- {
- oc = *bp++;
- do {
- if (binary) {
- c = !!(oc & 0x80);
- }
- else {
- c = oc;
- }
- ccount[c]++; /* Update counter for this bin */
- totalc++;
- /* Update inside / outside circle counts for Monte Carlo computation of PI */
- if (bean == 0) {
- monte[mp++] = (unsigned int)oc; /* Save character for Monte Carlo */
- if (mp >= MONTEN) { /* Calculate every MONTEN character */
- int mj;
- mp = 0;
- mcount++;
- montex = montey = 0;
- for (mj = 0; mj < MONTEN / 2; mj++) {
- montex = (montex * 256.0) + monte[mj];
- montey = (montey * 256.0) + monte[(MONTEN / 2) + mj];
- }
- if ((montex * montex + montey * montey) <= incirc) {
- inmont++;
- }
- }
- }
- /* Update calculation of serial correlation coefficient */
- sccun = (double)c;
- if (sccfirst) {
- sccfirst = RFALSE;
- scclast = 0;
- sccu0 = sccun;
- }
- else {
- scct1 = scct1 + scclast * sccun;
- }
- scct2 = scct2 + sccun;
- scct3 = scct3 + (sccun * sccun);
- scclast = sccun;
- oc <<= 1;
- } while (binary && (++bean < 8));
- }
- }
- /* RT_END -- Complete calculation and return results. */
- void rt_end(double* r_ent, double* r_chisq, double* r_mean,
- double* r_montepicalc, double* r_scc)
- {
- int i;
- double a;
- /* Complete calculation of serial correlation coefficient */
- scct1 = scct1 + scclast * sccu0;
- scct2 = scct2 * scct2;
- scc = totalc * scct3 - scct2;
- if (scc == 0.0) {
- scc = -100000;
- }
- else {
- scc = (totalc * scct1 - scct2) / scc;
- }
- /* Scan bins and calculate probability for each bin and Chi-Square distribution */
- cexp = totalc / (binary ? 2.0 : 256.0); /* Expected count per bin */
- for (i = 0; i < (binary ? 2 : 256); i++) {
- prob[i] = (double) ccount[i] / totalc;
- a = ccount[i] - cexp;
- chisq = chisq + (a * a) / cexp;
- datasum += ((double) i) * ccount[i];
- }
- /* Calculate entropy */
- for (i = 0; i < (binary ? 2 : 256); i++) {
- if (prob[i] > 0.0) {
- ent += prob[i] * Local_log2(1 / prob[i]);
- }
- }
- /* Calculate Monte Carlo value for PI from percentage of hits within the circle */
- montepi = 4.0 * (((double) inmont) / mcount);
- /* Return results through arguments */
- *r_ent = ent;
- *r_chisq = chisq;
- *r_mean = datasum / totalc;
- *r_montepicalc = montepi;
- *r_scc = scc;
- }
- ///////////////////////////////////////////////////////////////////////////////
- #if 0
- static double get_double()
- {
- return 1.0;
- }
- static double CalculateSqrm(double a, double b)
- {
- return ((a - b) * (a - b)) / b;
- }
- static double CalculatePhi(double x)
- {
- static const double v[15] =
- {
- 1.2533141373155, .6556795424187985, .4213692292880545,
- .3045902987101033, .2366523829135607, .1928081047153158,
- .1623776608968675, .1401041834530502, .1231319632579329,
- .1097872825783083, .09902859647173193, .09017567550106468,
- .08276628650136917, .0764757610162485, .07106958053885211
- };
- // Local variables
- double cphi, a, b, h;
- double z, sum, pwr;
- int i, j;
- if (fabs(x) > 7.0)
- {
- if (x >= 0.0)
- return 1.0;
- return 0.0;
- }
- if (x>=0.0)
- cphi = 0.0;
- else
- cphi = 1.0;
- j = (int) (fabs(x) + 0.5);
- j = std::min<int>(j, 14);
- z = (double) j;
- h = fabs(x) - z;
- a = v[j];
- b = z * a - 1.0;
- pwr = 1.0;
- sum = a + h * b;
- for (i = 2; i <= (24-j); i += 2)
- {
- a = (a + z * b) / i;
- b = (b + z * a) / (i + 1);
- pwr *= h * h;
- sum += pwr * (a + h * b);
- }
- cphi = sum * exp(x * -0.5 * x - 0.918938533204672);
- if (x < 0.0)
- return cphi;
- return 1.0 - cphi;
- }
- static double CalculateChisq(double x, int n)
- {
- // System generated locals
- double ret_val;
- // Local variables
- double d;
- long i, l;
- double s, t;
- double xmin;
- if (x <= 0.0)
- return 0.0;
- if (n > 20)
- {
- t = (pow( x / n, 0.33333) - 1.0 + 0.22222 / n) / sqrt(0.22222 / n);
- return CalculatePhi(std::min(t, 8.0));
- }
- l = 4 - n % 2;
- d = (double) std::min(1, n / 3);
- ret_val = 0.0;
- for (i = l; i <= n; i += 2)
- {
- d = d * x / (i - 2);
- ret_val += d;
- }
- xmin = std::min(x * 0.5, 50.0);
- if (l == 3)
- {
- s = sqrt( xmin );
- return CalculatePhi(s/0.7071068) - exp(-xmin) * 0.564189 * ret_val / s;
- }
- return 1.0 - exp(-xmin) * (ret_val + 1.0);
- }
- ///////////////////////////////////////////////////////////////////////////////
- // TestCraps
- //
- // This is the Craps test. It plays 200,000 games of craps, finds
- // the number of wins and the number of throws necessary to end
- // each game. The number of wins should be (very close to) a
- // normal with mean 200000p and variance 200000p(1 - p), with
- // p = 244 / 495. Throws necessary to complete the game can vary
- // from 1 to infinity, but counts for all > 21 are lumped with 21.
- // A chi-square test is made on the #-of-throws cell counts.
- // Each 32-bit integer from the test file provides the value for
- // the throw of a die, by floating to [0, 1), multiplying by 6
- // and taking 1 plus the integer part of the result.
- //
- static void TestCraps(double& pvalueWins, double& pvalueThrows)
- {
- static long nt[22];
- static double e[22];
- double t;
- double pwins;
- double av; // Expected win count.
- double sd;
- double ex;
- double sum;
- long ng;
- long gc;
- long nwins; // Actual win count.
- double pthrows;
- int nthrows;
- int point;
- int i, m, k;
- e[1] = 1.0 / 3.0;
- sum = e[1];
- for (k = 2; k <= 20; ++k)
- {
- e[k] = ( pow(27.0/36.0, (double) k-2) * 27.0 +
- pow(26.0/36.0, (double) k-2) * 40.0 +
- pow(25.0/36.0, (double) k-2) * 55.0 ) / 648.0;
- sum += e[k];
- }
- e[21] = 1.0 - sum;
- ng = 200000;
- nwins = 0;
- for (i = 1; i <= 21; ++i)
- nt[i] = 0;
- for (gc = 1; gc <= ng; ++gc)
- {
- point = (int)(get_double() * 6.0) + (int)(get_double() * 6.0) + 2;
- nthrows = 1;
- if ((point == 7) || (point == 11))
- ++nwins;
- else if ((point != 2) && (point != 3) && (point != 12))
- {
- for(;;)
- {
- ++nthrows;
- k = (int)(get_double() * 6.0) + (int)(get_double() * 6.0) + 2;
- if (k == 7)
- break;
- if (k == point)
- {
- ++nwins;
- break;
- }
- }
- }
- m = std::min<int>(21, nthrows);
- ++nt[m];
- }
- av = ng * 244.0 / 495.0;
- sd = sqrt(av * 251.0 / 495.0);
- t = (nwins - av) / sd;
- //dprintf(" Results of craps test for %s\n", filename);
- //dprintf(" No. of wins: Observed Expected\n");
- //dprintf(" %9ld %11.2f\n", nwins, av);
- pwins = CalculatePhi(t);
- //dprintf(" %8ld= No. of wins, z-score=%6.3f pvalue=%7.5f\n", nwins, t, pwins);
- //dprintf(" Analysis of Throws-per-Game:\n");
- sum = 0.0;
- for (i = 1; i <= 21; ++i)
- {
- ex = ng * e[i];
- sum += CalculateSqrm((double)nt[i], ex);
- }
- pthrows = CalculateChisq(sum, 20);
- //dprintf(" Chisq=%7.2f for 20 degrees of freedom, p=%8.5f\n", sum, pthrows);
- //dprintf(" Throws Observed Expected Chisq Sum\n");
- //sum = 0.0;
- //for (i = 1; i <= 21; ++i)
- //{
- // ex = ng * e[i];
- // t = sqrm((double)nt[i], ex);
- // sum += t;
- //
- // dprintf("%19d %8ld %10.1f %7.3f %8.3f\n", i, nt[i], ex, t, sum);
- //}
- //save_pvalue(pwins);
- //save_pvalue(pthrows);
- //dprintf(" SUMMARY FOR %s\n", filename);
- //dprintf(" p-value for no. of wins:%8.6f\n", pwins);
- //dprintf(" p-value for throws/game:%8.6f\n", pthrows);
- pvalueWins = pwins;
- pvalueThrows = pthrows;
- }
- #endif
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
|