/* NOLINT(build/header_guard) */ /* Copyright 2010 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* template parameters: FN, BUCKET_BITS, BLOCK_BITS, NUM_LAST_DISTANCES_TO_CHECK */ /* A (forgetful) hash table to the data seen by the compressor, to help create backward references to previous data. This is a hash map of fixed size (BUCKET_SIZE) to a ring buffer of fixed size (BLOCK_SIZE). The ring buffer contains the last BLOCK_SIZE index positions of the given hash key in the compressed data. */ #define HashLongestMatch HASHER() /* Number of hash buckets. */ #define BUCKET_SIZE (1 << BUCKET_BITS) /* Only BLOCK_SIZE newest backward references are kept, and the older are forgotten. */ #define BLOCK_SIZE (1u << BLOCK_BITS) /* Mask for accessing entries in a block (in a ringbuffer manner). */ #define BLOCK_MASK ((1 << BLOCK_BITS) - 1) #define HASH_MAP_SIZE (2 << BUCKET_BITS) static BROTLI_INLINE size_t FN(HashTypeLength)(void) { return 4; } static BROTLI_INLINE size_t FN(StoreLookahead)(void) { return 4; } /* HashBytes is the function that chooses the bucket to place the address in. The HashLongestMatch and HashLongestMatchQuickly classes have separate, different implementations of hashing. */ static uint32_t FN(HashBytes)(const uint8_t *data) { uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; /* The higher bits contain more mixture from the multiplication, so we take our results from there. */ return h >> (32 - BUCKET_BITS); } typedef struct HashLongestMatch { /* Number of entries in a particular bucket. */ uint16_t num_[BUCKET_SIZE]; /* Buckets containing BLOCK_SIZE of backward references. */ uint32_t buckets_[BLOCK_SIZE << BUCKET_BITS]; /* True if num_ array needs to be initialized. */ int is_dirty_; size_t num_dict_lookups_; size_t num_dict_matches_; } HashLongestMatch; static void FN(Reset)(HashLongestMatch* self) { self->is_dirty_ = 1; self->num_dict_lookups_ = 0; self->num_dict_matches_ = 0; } static void FN(InitEmpty)(HashLongestMatch* self) { if (self->is_dirty_) { memset(self->num_, 0, sizeof(self->num_)); self->is_dirty_ = 0; } } static void FN(InitForData)(HashLongestMatch* self, const uint8_t* data, size_t num) { size_t i; for (i = 0; i < num; ++i) { const uint32_t key = FN(HashBytes)(&data[i]); self->num_[key] = 0; } if (num != 0) { self->is_dirty_ = 0; } } static void FN(Init)( MemoryManager* m, HashLongestMatch* self, const uint8_t* data, int lgwin, size_t position, size_t bytes, int is_last) { /* Choose which init method is faster. Init() is about 100 times faster than InitForData(). */ const size_t kMaxBytesForPartialHashInit = HASH_MAP_SIZE >> 7; BROTLI_UNUSED(m); BROTLI_UNUSED(lgwin); if (position == 0 && is_last && bytes <= kMaxBytesForPartialHashInit) { FN(InitForData)(self, data, bytes); } else { FN(InitEmpty)(self); } } /* Look at 4 bytes at &data[ix & mask]. Compute a hash from these, and store the value of ix at that position. */ static BROTLI_INLINE void FN(Store)(HashLongestMatch* self, const uint8_t *data, const size_t mask, const size_t ix) { const uint32_t key = FN(HashBytes)(&data[ix & mask]); const size_t minor_ix = self->num_[key] & BLOCK_MASK; self->buckets_[minor_ix + (key << BLOCK_BITS)] = (uint32_t)ix; ++self->num_[key]; } static BROTLI_INLINE void FN(StoreRange)(HashLongestMatch* self, const uint8_t *data, const size_t mask, const size_t ix_start, const size_t ix_end) { size_t i; for (i = ix_start; i < ix_end; ++i) { FN(Store)(self, data, mask, i); } } static BROTLI_INLINE void FN(StitchToPreviousBlock)(HashLongestMatch* self, size_t num_bytes, size_t position, const uint8_t* ringbuffer, size_t ringbuffer_mask) { if (num_bytes >= FN(HashTypeLength)() - 1 && position >= 3) { /* Prepare the hashes for three last bytes of the last write. These could not be calculated before, since they require knowledge of both the previous and the current block. */ FN(Store)(self, ringbuffer, ringbuffer_mask, position - 3); FN(Store)(self, ringbuffer, ringbuffer_mask, position - 2); FN(Store)(self, ringbuffer, ringbuffer_mask, position - 1); } } /* Find a longest backward match of &data[cur_ix] up to the length of max_length and stores the position cur_ix in the hash table. Does not look for matches longer than max_length. Does not look for matches further away than max_backward. Writes the best found match length into best_len_out. Writes the index (&data[index]) offset from the start of the best match into best_distance_out. Write the score of the best match into best_score_out. Returns 1 when match is found, otherwise 0. */ static BROTLI_INLINE int FN(FindLongestMatch)(HashLongestMatch* self, const uint8_t* BROTLI_RESTRICT data, const size_t ring_buffer_mask, const int* BROTLI_RESTRICT distance_cache, const size_t cur_ix, const size_t max_length, const size_t max_backward, size_t* BROTLI_RESTRICT best_len_out, size_t* BROTLI_RESTRICT best_len_code_out, size_t* BROTLI_RESTRICT best_distance_out, double* BROTLI_RESTRICT best_score_out) { const size_t cur_ix_masked = cur_ix & ring_buffer_mask; int is_match_found = 0; /* Don't accept a short copy from far away. */ double best_score = *best_score_out; size_t best_len = *best_len_out; size_t i; *best_len_code_out = 0; *best_len_out = 0; /* Try last distance first. */ for (i = 0; i < NUM_LAST_DISTANCES_TO_CHECK; ++i) { const size_t idx = kDistanceCacheIndex[i]; const size_t backward = (size_t)(distance_cache[idx] + kDistanceCacheOffset[i]); size_t prev_ix = (size_t)(cur_ix - backward); if (prev_ix >= cur_ix) { continue; } if (PREDICT_FALSE(backward > max_backward)) { continue; } prev_ix &= ring_buffer_mask; if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } { const size_t len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 3 || (len == 2 && i < 2)) { /* Comparing for >= 2 does not change the semantics, but just saves for a few unnecessary binary logarithms in backward reference score, since we are not interested in such short matches. */ double score = BackwardReferenceScoreUsingLastDistance(len, i); if (best_score < score) { best_score = score; best_len = len; *best_len_out = best_len; *best_len_code_out = best_len; *best_distance_out = backward; *best_score_out = best_score; is_match_found = 1; } } } } { const uint32_t key = FN(HashBytes)(&data[cur_ix_masked]); const uint32_t * BROTLI_RESTRICT const bucket = &self->buckets_[key << BLOCK_BITS]; const size_t down = (self->num_[key] > BLOCK_SIZE) ? (self->num_[key] - BLOCK_SIZE) : 0u; for (i = self->num_[key]; i > down;) { size_t prev_ix = bucket[--i & BLOCK_MASK]; const size_t backward = cur_ix - prev_ix; if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { break; } prev_ix &= ring_buffer_mask; if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } { const size_t len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 4) { /* Comparing for >= 3 does not change the semantics, but just saves for a few unnecessary binary logarithms in backward reference score, since we are not interested in such short matches. */ double score = BackwardReferenceScore(len, backward); if (best_score < score) { best_score = score; best_len = len; *best_len_out = best_len; *best_len_code_out = best_len; *best_distance_out = backward; *best_score_out = best_score; is_match_found = 1; } } } } self->buckets_[(key << BLOCK_BITS) + (self->num_[key] & BLOCK_MASK)] = (uint32_t)cur_ix; ++self->num_[key]; } if (!is_match_found && self->num_dict_matches_ >= (self->num_dict_lookups_ >> 7)) { size_t dict_key = Hash14(&data[cur_ix_masked]) << 1; int k; for (k = 0; k < 2; ++k, ++dict_key) { const uint16_t v = kStaticDictionaryHash[dict_key]; ++self->num_dict_lookups_; if (v > 0) { const size_t len = v & 31; const size_t dist = v >> 5; const size_t offset = kBrotliDictionaryOffsetsByLength[len] + len * dist; if (len <= max_length) { const size_t matchlen = FindMatchLengthWithLimit(&data[cur_ix_masked], &kBrotliDictionary[offset], len); if (matchlen + kCutoffTransformsCount > len && matchlen > 0) { const size_t transform_id = kCutoffTransforms[len - matchlen]; const size_t transform_step = (size_t)1 << kBrotliDictionarySizeBitsByLength[len]; const size_t word_id = dist + transform_id * transform_step; const size_t backward = max_backward + word_id + 1; double score = BackwardReferenceScore(matchlen, backward); if (best_score < score) { ++self->num_dict_matches_; best_score = score; best_len = matchlen; *best_len_out = best_len; *best_len_code_out = len; *best_distance_out = backward; *best_score_out = best_score; is_match_found = 1; } } } } } } return is_match_found; } #undef HASH_MAP_SIZE #undef BLOCK_MASK #undef BLOCK_SIZE #undef BUCKET_SIZE #undef HashLongestMatch