/******************************************************************************/ #include "stdafx.h" namespace EE{ /******************************************************************************/ Quaternion& Quaternion::operator*=(Flt f) { x*=f; y*=f; z*=f; w*=f; return T; } /******************************************************************************/ void Quaternion::mul(C Quaternion &q, Quaternion &dest)C { dest.set(y*q.z - z*q.y + w*q.x + x*q.w, z*q.x - x*q.z + w*q.y + y*q.w, x*q.y - y*q.x + w*q.z + z*q.w, w*q.w - x*q.x - y*q.y - z*q.z); } void Quaternion::inverse(Quaternion &dest)C { dest.set(-x, -y, -z, w); dest/=length2(); } /******************************************************************************/ Quaternion& Quaternion::setRotateX(Flt angle ) {CosSin(w, x, angle*-0.5f); y=z=0; return T;} Quaternion& Quaternion::setRotateY(Flt angle ) {CosSin(w, y, angle*-0.5f); x=z=0; return T;} Quaternion& Quaternion::setRotateZ(Flt angle ) {CosSin(w, z, angle*-0.5f); x=y=0; return T;} Quaternion& Quaternion::setRotate (Flt x, Flt y, Flt z) { Flt cos_x_2, sin_x_2; CosSin(cos_x_2, sin_x_2, x*-0.5f); Flt cos_y_2, sin_y_2; CosSin(cos_y_2, sin_y_2, y*-0.5f); Flt cos_z_2, sin_z_2; CosSin(cos_z_2, sin_z_2, z*-0.5f); T.x = cos_z_2*cos_y_2*sin_x_2 - sin_z_2*sin_y_2*cos_x_2; T.y = cos_z_2*sin_y_2*cos_x_2 + sin_z_2*cos_y_2*sin_x_2; T.z = sin_z_2*cos_y_2*cos_x_2 - cos_z_2*sin_y_2*sin_x_2; T.w = cos_z_2*cos_y_2*cos_x_2 + sin_z_2*sin_y_2*sin_x_2; return T; } Quaternion& Quaternion::setRotate(C Vec &axis, Flt angle) { Flt sin; CosSin(w, sin, angle*-0.5f); xyz=axis*sin; return T; } /******************************************************************************/ Flt Quaternion::angle()C { return Acos(w)*2; } Vec Quaternion::axis()C { Vec O=-xyz; O.normalize(); return O; } /******************************************************************************/ Orient::Orient(C Quaternion &q) { Flt xx=q.x*q.x, xy=q.x*q.y, xz=q.x*q.z, xw=q.x*q.w, yy=q.y*q.y, yz=q.y*q.z, yw=q.y*q.w, zz=q.z*q.z, zw=q.z*q.w; perp.x= 2*(xy+zw); perp.y=1-2*(xx+zz); perp.z= 2*(yz-xw); dir.x= 2*(xz-yw); dir.y= 2*(yz+xw); dir.z=1-2*(xx+yy); perp.normalize(); dir .normalize(); } Matrix3::Matrix3(C Quaternion &q) { Flt xx=q.x*q.x, xy=q.x*q.y, xz=q.x*q.z, xw=q.x*q.w, yy=q.y*q.y, yz=q.y*q.z, yw=q.y*q.w, zz=q.z*q.z, zw=q.z*q.w; T.x.x=1-2*(yy+zz); T.x.y= 2*(xy-zw); T.x.z= 2*(xz+yw); T.y.x= 2*(xy+zw); T.y.y=1-2*(xx+zz); T.y.z= 2*(yz-xw); T.z.x= 2*(xz-yw); T.z.y= 2*(yz+xw); T.z.z=1-2*(xx+yy); normalize(); } /******************************************************************************/ Quaternion::Quaternion(C Matrix3 &m) { Flt f=m.x.x+m.y.y+m.z.z+1; if( f>0.4f) { w=0.5f *Sqrt(f); f=0.25f/w; x=(m.z.y-m.y.z)*f; y=(m.x.z-m.z.x)*f; z=(m.y.x-m.x.y)*f; }else if(m.x.x>m.y.y && m.x.x>m.z.z) { x=-0.5f *Sqrt(1+m.x.x-m.y.y-m.z.z); f= 0.25f/x; y=(m.x.y+m.y.x)*f; z=(m.x.z+m.z.x)*f; w=(m.z.y-m.y.z)*f; }else if(m.y.y>m.z.z) { y=-0.5f *Sqrt(1+m.y.y-m.x.x-m.z.z); f= 0.25f/y; x=(m.x.y+m.y.x)*f; z=(m.y.z+m.z.y)*f; w=(m.x.z-m.z.x)*f; }else { z=-0.5f *Sqrt(1+m.z.z-m.x.x-m.y.y); f= 0.25f/z; x=(m.x.z+m.z.x)*f; y=(m.y.z+m.z.y)*f; w=(m.y.x-m.x.y)*f; } } /******************************************************************************/ static Quaternion Log(C Quaternion &q) { Flt length=q.xyz.length(); if( length<=EPS)return Vec4(q.xyz , 0); else return Vec4(q.xyz*(Acos(q.w)/length), 0); } static Quaternion Exp(C Quaternion &q) { Flt length=q.xyz.length(); if( length<=EPS)return Vec4(q.xyz , Cos(length)); else return Vec4(q.xyz*(Sin(length)/length), Cos(length)); } Quaternion GetTangent(C Quaternion &prev, C Quaternion &cur, C Quaternion &next) { Quaternion a=cur; a.xyz.chs(); Quaternion b=a ; a=Log(a*=prev) +Log(b*=next); a*=-0.25f; Quaternion O; cur.mul(Exp(a), O); return O; } /******************************************************************************/ static Quaternion SlerpNoInv(C Quaternion &a, C Quaternion &b, Flt step) { Quaternion O; Flt dot=Dot(a, b); if(Abs(dot)>=0.99f)O=Lerp(a, b, step);else // if angle is small then use linear interpolation { Flt angle=Acos(dot ), sin =Sin (angle); O=a*(Sin(angle*(1-step))/sin) + b*(Sin(angle*step)/sin); } O.normalize(); return O; } /******************************************************************************/ Quaternion Slerp(C Quaternion &a, C Quaternion &b, Flt step) { Quaternion O, temp=b; Flt dot=Dot(a, b); if( dot<0) // other side { CHS(dot); temp.chs(); } if(dot>=0.99f)O=Lerp(a, temp, step);else // if angle is small then use linear interpolation { Flt angle=Acos(dot ), sin =Sin (angle); O=a*(Sin(angle*(1-step))/sin) + temp*(Sin(angle*step)/sin); } O.normalize(); return O; } /******************************************************************************/ Quaternion Squad(C Quaternion &from, C Quaternion &to, C Quaternion &tan0, C Quaternion &tan1, Flt step) { return SlerpNoInv(SlerpNoInv(from, to , step), SlerpNoInv(tan0, tan1, step), 2*step*(1-step)); } /******************************************************************************/ } /******************************************************************************/