btVector3.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
  3. This software is provided 'as-is', without any express or implied warranty.
  4. In no event will the authors be held liable for any damages arising from the use of this software.
  5. Permission is granted to anyone to use this software for any purpose,
  6. including commercial applications, and to alter it and redistribute it freely,
  7. subject to the following restrictions:
  8. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  9. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  10. 3. This notice may not be removed or altered from any source distribution.
  11. */
  12. #ifndef BT_VECTOR3_H
  13. #define BT_VECTOR3_H
  14. #include "btMinMax.h"
  15. #include "btScalar.h"
  16. #ifdef BT_USE_DOUBLE_PRECISION
  17. #define btVector3Data btVector3DoubleData
  18. #define btVector3DataName "btVector3DoubleData"
  19. #else
  20. #define btVector3Data btVector3FloatData
  21. #define btVector3DataName "btVector3FloatData"
  22. #endif //BT_USE_DOUBLE_PRECISION
  23. /**@brief btVector3 can be used to represent 3D points and vectors.
  24. * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
  25. * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
  26. */
  27. ATTRIBUTE_ALIGNED16(class)
  28. btVector3
  29. {
  30. public:
  31. #if defined(__SPU__) && defined(__CELLOS_LV2__)
  32. btScalar m_floats[4];
  33. public:
  34. SIMD_FORCE_INLINE const vec_float4& get128() const
  35. {
  36. return *((const vec_float4*)&m_floats[0]);
  37. }
  38. public:
  39. #else //__CELLOS_LV2__ __SPU__
  40. #ifdef BT_USE_SSE // _WIN32
  41. union {
  42. __m128 mVec128;
  43. btScalar m_floats[4];
  44. };
  45. SIMD_FORCE_INLINE __m128 get128() const
  46. {
  47. return mVec128;
  48. }
  49. SIMD_FORCE_INLINE void set128(__m128 v128)
  50. {
  51. mVec128 = v128;
  52. }
  53. #else
  54. btScalar m_floats[4];
  55. #endif
  56. #endif //__CELLOS_LV2__ __SPU__
  57. public:
  58. /**@brief No initialization constructor */
  59. SIMD_FORCE_INLINE btVector3() {}
  60. /**@brief Constructor from scalars
  61. * @param x X value
  62. * @param y Y value
  63. * @param z Z value
  64. */
  65. SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z)
  66. {
  67. m_floats[0] = x;
  68. m_floats[1] = y;
  69. m_floats[2] = z;
  70. m_floats[3] = btScalar(0.);
  71. }
  72. /**@brief Add a vector to this one
  73. * @param The vector to add to this one */
  74. SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
  75. {
  76. m_floats[0] += v.m_floats[0];
  77. m_floats[1] += v.m_floats[1];
  78. m_floats[2] += v.m_floats[2];
  79. return *this;
  80. }
  81. /**@brief Subtract a vector from this one
  82. * @param The vector to subtract */
  83. SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
  84. {
  85. m_floats[0] -= v.m_floats[0];
  86. m_floats[1] -= v.m_floats[1];
  87. m_floats[2] -= v.m_floats[2];
  88. return *this;
  89. }
  90. /**@brief Scale the vector
  91. * @param s Scale factor */
  92. SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
  93. {
  94. m_floats[0] *= s;
  95. m_floats[1] *= s;
  96. m_floats[2] *= s;
  97. return *this;
  98. }
  99. /**@brief Inversely scale the vector
  100. * @param s Scale factor to divide by */
  101. SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
  102. {
  103. btFullAssert(s != btScalar(0.0));
  104. return * this *= btScalar(1.0) / s;
  105. }
  106. /**@brief Return the dot product
  107. * @param v The other vector in the dot product */
  108. SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
  109. {
  110. return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2];
  111. }
  112. /**@brief Return the length of the vector squared */
  113. SIMD_FORCE_INLINE btScalar length2() const
  114. {
  115. return dot(*this);
  116. }
  117. /**@brief Return the length of the vector */
  118. SIMD_FORCE_INLINE btScalar length() const
  119. {
  120. return btSqrt(length2());
  121. }
  122. /**@brief Return the distance squared between the ends of this and another vector
  123. * This is symantically treating the vector like a point */
  124. SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
  125. /**@brief Return the distance between the ends of this and another vector
  126. * This is symantically treating the vector like a point */
  127. SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
  128. SIMD_FORCE_INLINE btVector3& safeNormalize()
  129. {
  130. btVector3 absVec = this->absolute();
  131. int maxIndex = absVec.maxAxis();
  132. if (absVec[maxIndex] > 0) {
  133. *this /= absVec[maxIndex];
  134. return * this /= length();
  135. }
  136. setValue(1, 0, 0);
  137. return *this;
  138. }
  139. /**@brief Normalize this vector
  140. * x^2 + y^2 + z^2 = 1 */
  141. SIMD_FORCE_INLINE btVector3& normalize()
  142. {
  143. return * this /= length();
  144. }
  145. /**@brief Return a normalized version of this vector */
  146. SIMD_FORCE_INLINE btVector3 normalized() const;
  147. /**@brief Return a rotated version of this vector
  148. * @param wAxis The axis to rotate about
  149. * @param angle The angle to rotate by */
  150. SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const;
  151. /**@brief Return the angle between this and another vector
  152. * @param v The other vector */
  153. SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
  154. {
  155. btScalar s = btSqrt(length2() * v.length2());
  156. btFullAssert(s != btScalar(0.0));
  157. return btAcos(dot(v) / s);
  158. }
  159. /**@brief Return a vector will the absolute values of each element */
  160. SIMD_FORCE_INLINE btVector3 absolute() const
  161. {
  162. return btVector3(
  163. btFabs(m_floats[0]),
  164. btFabs(m_floats[1]),
  165. btFabs(m_floats[2]));
  166. }
  167. /**@brief Return the cross product between this and another vector
  168. * @param v The other vector */
  169. SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
  170. {
  171. return btVector3(
  172. m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
  173. m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
  174. m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
  175. }
  176. SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
  177. {
  178. return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
  179. }
  180. /**@brief Return the axis with the smallest value
  181. * Note return values are 0,1,2 for x, y, or z */
  182. SIMD_FORCE_INLINE int minAxis() const
  183. {
  184. return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
  185. }
  186. /**@brief Return the axis with the largest value
  187. * Note return values are 0,1,2 for x, y, or z */
  188. SIMD_FORCE_INLINE int maxAxis() const
  189. {
  190. return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
  191. }
  192. SIMD_FORCE_INLINE int furthestAxis() const
  193. {
  194. return absolute().minAxis();
  195. }
  196. SIMD_FORCE_INLINE int closestAxis() const
  197. {
  198. return absolute().maxAxis();
  199. }
  200. SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
  201. {
  202. btScalar s = btScalar(1.0) - rt;
  203. m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
  204. m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
  205. m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
  206. //don't do the unused w component
  207. // m_co[3] = s * v0[3] + rt * v1[3];
  208. }
  209. /**@brief Return the linear interpolation between this and another vector
  210. * @param v The other vector
  211. * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
  212. SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
  213. {
  214. return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
  215. m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
  216. m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
  217. }
  218. /**@brief Elementwise multiply this vector by the other
  219. * @param v The other vector */
  220. SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
  221. {
  222. m_floats[0] *= v.m_floats[0];
  223. m_floats[1] *= v.m_floats[1];
  224. m_floats[2] *= v.m_floats[2];
  225. return *this;
  226. }
  227. /**@brief Return the x value */
  228. SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
  229. /**@brief Return the y value */
  230. SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
  231. /**@brief Return the z value */
  232. SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
  233. /**@brief Set the x value */
  234. SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; };
  235. /**@brief Set the y value */
  236. SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; };
  237. /**@brief Set the z value */
  238. SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; };
  239. /**@brief Set the w value */
  240. SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; };
  241. /**@brief Return the x value */
  242. SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
  243. /**@brief Return the y value */
  244. SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
  245. /**@brief Return the z value */
  246. SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
  247. /**@brief Return the w value */
  248. SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
  249. //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
  250. //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
  251. ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
  252. SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; }
  253. SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; }
  254. SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
  255. {
  256. return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0]));
  257. }
  258. SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
  259. {
  260. return !(*this == other);
  261. }
  262. /**@brief Set each element to the max of the current values and the values of another btVector3
  263. * @param other The other btVector3 to compare with
  264. */
  265. SIMD_FORCE_INLINE void setMax(const btVector3& other)
  266. {
  267. btSetMax(m_floats[0], other.m_floats[0]);
  268. btSetMax(m_floats[1], other.m_floats[1]);
  269. btSetMax(m_floats[2], other.m_floats[2]);
  270. btSetMax(m_floats[3], other.w());
  271. }
  272. /**@brief Set each element to the min of the current values and the values of another btVector3
  273. * @param other The other btVector3 to compare with
  274. */
  275. SIMD_FORCE_INLINE void setMin(const btVector3& other)
  276. {
  277. btSetMin(m_floats[0], other.m_floats[0]);
  278. btSetMin(m_floats[1], other.m_floats[1]);
  279. btSetMin(m_floats[2], other.m_floats[2]);
  280. btSetMin(m_floats[3], other.w());
  281. }
  282. SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z)
  283. {
  284. m_floats[0] = x;
  285. m_floats[1] = y;
  286. m_floats[2] = z;
  287. m_floats[3] = btScalar(0.);
  288. }
  289. void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const
  290. {
  291. v0->setValue(0., -z(), y());
  292. v1->setValue(z(), 0., -x());
  293. v2->setValue(-y(), x(), 0.);
  294. }
  295. void setZero()
  296. {
  297. setValue(btScalar(0.), btScalar(0.), btScalar(0.));
  298. }
  299. SIMD_FORCE_INLINE bool isZero() const
  300. {
  301. return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
  302. }
  303. SIMD_FORCE_INLINE bool fuzzyZero() const
  304. {
  305. return length2() < SIMD_EPSILON;
  306. }
  307. SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const;
  308. SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn);
  309. SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const;
  310. SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
  311. SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const;
  312. SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
  313. };
  314. /**@brief Return the sum of two vectors (Point symantics)*/
  315. SIMD_FORCE_INLINE btVector3
  316. operator+(const btVector3& v1, const btVector3& v2)
  317. {
  318. return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
  319. }
  320. /**@brief Return the elementwise product of two vectors */
  321. SIMD_FORCE_INLINE btVector3
  322. operator*(const btVector3& v1, const btVector3& v2)
  323. {
  324. return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
  325. }
  326. /**@brief Return the difference between two vectors */
  327. SIMD_FORCE_INLINE btVector3
  328. operator-(const btVector3& v1, const btVector3& v2)
  329. {
  330. return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
  331. }
  332. /**@brief Return the negative of the vector */
  333. SIMD_FORCE_INLINE btVector3
  334. operator-(const btVector3& v)
  335. {
  336. return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
  337. }
  338. /**@brief Return the vector scaled by s */
  339. SIMD_FORCE_INLINE btVector3
  340. operator*(const btVector3& v, const btScalar& s)
  341. {
  342. return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
  343. }
  344. /**@brief Return the vector scaled by s */
  345. SIMD_FORCE_INLINE btVector3
  346. operator*(const btScalar& s, const btVector3& v)
  347. {
  348. return v * s;
  349. }
  350. /**@brief Return the vector inversely scaled by s */
  351. SIMD_FORCE_INLINE btVector3
  352. operator/(const btVector3& v, const btScalar& s)
  353. {
  354. btFullAssert(s != btScalar(0.0));
  355. return v * (btScalar(1.0) / s);
  356. }
  357. /**@brief Return the vector inversely scaled by s */
  358. SIMD_FORCE_INLINE btVector3
  359. operator/(const btVector3& v1, const btVector3& v2)
  360. {
  361. return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]);
  362. }
  363. /**@brief Return the dot product between two vectors */
  364. SIMD_FORCE_INLINE btScalar
  365. btDot(const btVector3& v1, const btVector3& v2)
  366. {
  367. return v1.dot(v2);
  368. }
  369. /**@brief Return the distance squared between two vectors */
  370. SIMD_FORCE_INLINE btScalar
  371. btDistance2(const btVector3& v1, const btVector3& v2)
  372. {
  373. return v1.distance2(v2);
  374. }
  375. /**@brief Return the distance between two vectors */
  376. SIMD_FORCE_INLINE btScalar
  377. btDistance(const btVector3& v1, const btVector3& v2)
  378. {
  379. return v1.distance(v2);
  380. }
  381. /**@brief Return the angle between two vectors */
  382. SIMD_FORCE_INLINE btScalar
  383. btAngle(const btVector3& v1, const btVector3& v2)
  384. {
  385. return v1.angle(v2);
  386. }
  387. /**@brief Return the cross product of two vectors */
  388. SIMD_FORCE_INLINE btVector3
  389. btCross(const btVector3& v1, const btVector3& v2)
  390. {
  391. return v1.cross(v2);
  392. }
  393. SIMD_FORCE_INLINE btScalar
  394. btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
  395. {
  396. return v1.triple(v2, v3);
  397. }
  398. /**@brief Return the linear interpolation between two vectors
  399. * @param v1 One vector
  400. * @param v2 The other vector
  401. * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
  402. SIMD_FORCE_INLINE btVector3
  403. lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
  404. {
  405. return v1.lerp(v2, t);
  406. }
  407. SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
  408. {
  409. return (v - *this).length2();
  410. }
  411. SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
  412. {
  413. return (v - *this).length();
  414. }
  415. SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
  416. {
  417. return *this / length();
  418. }
  419. SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar angle) const
  420. {
  421. // wAxis must be a unit lenght vector
  422. btVector3 o = wAxis * wAxis.dot(*this);
  423. btVector3 x = *this - o;
  424. btVector3 y;
  425. y = wAxis.cross(*this);
  426. return (o + x * btCos(angle) + y * btSin(angle));
  427. }
  428. class btVector4 : public btVector3 {
  429. public:
  430. SIMD_FORCE_INLINE btVector4() {}
  431. SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
  432. : btVector3(x, y, z)
  433. {
  434. m_floats[3] = w;
  435. }
  436. SIMD_FORCE_INLINE btVector4 absolute4() const
  437. {
  438. return btVector4(
  439. btFabs(m_floats[0]),
  440. btFabs(m_floats[1]),
  441. btFabs(m_floats[2]),
  442. btFabs(m_floats[3]));
  443. }
  444. btScalar getW() const { return m_floats[3]; }
  445. SIMD_FORCE_INLINE int maxAxis4() const
  446. {
  447. int maxIndex = -1;
  448. btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
  449. if (m_floats[0] > maxVal) {
  450. maxIndex = 0;
  451. maxVal = m_floats[0];
  452. }
  453. if (m_floats[1] > maxVal) {
  454. maxIndex = 1;
  455. maxVal = m_floats[1];
  456. }
  457. if (m_floats[2] > maxVal) {
  458. maxIndex = 2;
  459. maxVal = m_floats[2];
  460. }
  461. if (m_floats[3] > maxVal) {
  462. maxIndex = 3;
  463. }
  464. return maxIndex;
  465. }
  466. SIMD_FORCE_INLINE int minAxis4() const
  467. {
  468. int minIndex = -1;
  469. btScalar minVal = btScalar(BT_LARGE_FLOAT);
  470. if (m_floats[0] < minVal) {
  471. minIndex = 0;
  472. minVal = m_floats[0];
  473. }
  474. if (m_floats[1] < minVal) {
  475. minIndex = 1;
  476. minVal = m_floats[1];
  477. }
  478. if (m_floats[2] < minVal) {
  479. minIndex = 2;
  480. minVal = m_floats[2];
  481. }
  482. if (m_floats[3] < minVal) {
  483. minIndex = 3;
  484. }
  485. return minIndex;
  486. }
  487. SIMD_FORCE_INLINE int closestAxis4() const
  488. {
  489. return absolute4().maxAxis4();
  490. }
  491. /**@brief Set x,y,z and zero w
  492. * @param x Value of x
  493. * @param y Value of y
  494. * @param z Value of z
  495. */
  496. /* void getValue(btScalar *m) const
  497. {
  498. m[0] = m_floats[0];
  499. m[1] = m_floats[1];
  500. m[2] =m_floats[2];
  501. }
  502. */
  503. /**@brief Set the values
  504. * @param x Value of x
  505. * @param y Value of y
  506. * @param z Value of z
  507. * @param w Value of w
  508. */
  509. SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
  510. {
  511. m_floats[0] = x;
  512. m_floats[1] = y;
  513. m_floats[2] = z;
  514. m_floats[3] = w;
  515. }
  516. };
  517. ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
  518. SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
  519. {
  520. #ifdef BT_USE_DOUBLE_PRECISION
  521. unsigned char* dest = (unsigned char*)&destVal;
  522. unsigned char* src = (unsigned char*)&sourceVal;
  523. dest[0] = src[7];
  524. dest[1] = src[6];
  525. dest[2] = src[5];
  526. dest[3] = src[4];
  527. dest[4] = src[3];
  528. dest[5] = src[2];
  529. dest[6] = src[1];
  530. dest[7] = src[0];
  531. #else
  532. unsigned char* dest = (unsigned char*)&destVal;
  533. unsigned char* src = (unsigned char*)&sourceVal;
  534. dest[0] = src[3];
  535. dest[1] = src[2];
  536. dest[2] = src[1];
  537. dest[3] = src[0];
  538. #endif //BT_USE_DOUBLE_PRECISION
  539. }
  540. ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
  541. SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
  542. {
  543. for (int i = 0; i < 4; i++) {
  544. btSwapScalarEndian(sourceVec[i], destVec[i]);
  545. }
  546. }
  547. ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
  548. SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
  549. {
  550. btVector3 swappedVec;
  551. for (int i = 0; i < 4; i++) {
  552. btSwapScalarEndian(vector[i], swappedVec[i]);
  553. }
  554. vector = swappedVec;
  555. }
  556. template <class T>
  557. SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q)
  558. {
  559. if (btFabs(n[2]) > SIMDSQRT12) {
  560. // choose p in y-z plane
  561. btScalar a = n[1] * n[1] + n[2] * n[2];
  562. btScalar k = btRecipSqrt(a);
  563. p[0] = 0;
  564. p[1] = -n[2] * k;
  565. p[2] = n[1] * k;
  566. // set q = n x p
  567. q[0] = a * k;
  568. q[1] = -n[0] * p[2];
  569. q[2] = n[0] * p[1];
  570. }
  571. else {
  572. // choose p in x-y plane
  573. btScalar a = n[0] * n[0] + n[1] * n[1];
  574. btScalar k = btRecipSqrt(a);
  575. p[0] = -n[1] * k;
  576. p[1] = n[0] * k;
  577. p[2] = 0;
  578. // set q = n x p
  579. q[0] = -n[2] * p[1];
  580. q[1] = n[2] * p[0];
  581. q[2] = a * k;
  582. }
  583. }
  584. struct btVector3FloatData {
  585. float m_floats[4];
  586. };
  587. struct btVector3DoubleData {
  588. double m_floats[4];
  589. };
  590. SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
  591. {
  592. ///could also do a memcpy, check if it is worth it
  593. for (int i = 0; i < 4; i++)
  594. dataOut.m_floats[i] = float(m_floats[i]);
  595. }
  596. SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
  597. {
  598. for (int i = 0; i < 4; i++)
  599. m_floats[i] = btScalar(dataIn.m_floats[i]);
  600. }
  601. SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
  602. {
  603. ///could also do a memcpy, check if it is worth it
  604. for (int i = 0; i < 4; i++)
  605. dataOut.m_floats[i] = double(m_floats[i]);
  606. }
  607. SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
  608. {
  609. for (int i = 0; i < 4; i++)
  610. m_floats[i] = btScalar(dataIn.m_floats[i]);
  611. }
  612. SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
  613. {
  614. ///could also do a memcpy, check if it is worth it
  615. for (int i = 0; i < 4; i++)
  616. dataOut.m_floats[i] = m_floats[i];
  617. }
  618. SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn)
  619. {
  620. for (int i = 0; i < 4; i++)
  621. m_floats[i] = dataIn.m_floats[i];
  622. }
  623. #endif //BT_VECTOR3_H