| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /* -----------------------------------------------------------------------------------------------------------
- Software License for The Fraunhofer FDK AAC Codec Library for Android
- © Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
- 1. INTRODUCTION
- The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
- the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
- This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
- AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
- audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
- independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
- of the MPEG specifications.
- Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
- may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
- individually for the purpose of encoding or decoding bit streams in products that are compliant with
- the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
- these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
- software may already be covered under those patent licenses when it is used for those licensed purposes only.
- Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
- are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
- applications information and documentation.
- 2. COPYRIGHT LICENSE
- Redistribution and use in source and binary forms, with or without modification, are permitted without
- payment of copyright license fees provided that you satisfy the following conditions:
- You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
- your modifications thereto in source code form.
- You must retain the complete text of this software license in the documentation and/or other materials
- provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
- You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
- modifications thereto to recipients of copies in binary form.
- The name of Fraunhofer may not be used to endorse or promote products derived from this library without
- prior written permission.
- You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
- software or your modifications thereto.
- Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
- and the date of any change. For modified versions of the FDK AAC Codec, the term
- "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
- "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
- 3. NO PATENT LICENSE
- NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
- ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
- respect to this software.
- You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
- by appropriate patent licenses.
- 4. DISCLAIMER
- This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
- "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
- of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
- CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
- including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
- or business interruption, however caused and on any theory of liability, whether in contract, strict
- liability, or tort (including negligence), arising in any way out of the use of this software, even if
- advised of the possibility of such damage.
- 5. CONTACT INFORMATION
- Fraunhofer Institute for Integrated Circuits IIS
- Attention: Audio and Multimedia Departments - FDK AAC LL
- Am Wolfsmantel 33
- 91058 Erlangen, Germany
- www.iis.fraunhofer.de/amm
- [email protected]
- ----------------------------------------------------------------------------------------------------------- */
- /*************************** Fraunhofer IIS FDK Tools **********************
- Author(s): M. Gayer
- Description: Fixed point specific mathematical functions
- ******************************************************************************/
- #ifndef __fixpoint_math_H
- #define __fixpoint_math_H
- #include "common_fix.h"
- #if !defined(FUNCTION_fIsLessThan)
- /**
- * \brief Compares two fixpoint values incl. scaling.
- * \param a_m mantissa of the first input value.
- * \param a_e exponent of the first input value.
- * \param b_m mantissa of the second input value.
- * \param b_e exponent of the second input value.
- * \return non-zero if (a_m*2^a_e) < (b_m*2^b_e), 0 otherwise
- */
- FDK_INLINE INT fIsLessThan(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e)
- {
- if (a_e > b_e) {
- return (b_m >> fMin(a_e-b_e, DFRACT_BITS-1) > a_m);
- } else {
- return (a_m >> fMin(b_e-a_e, DFRACT_BITS-1) < b_m);
- }
- }
- FDK_INLINE INT fIsLessThan(FIXP_SGL a_m, INT a_e, FIXP_SGL b_m, INT b_e)
- {
- if (a_e > b_e) {
- return (b_m >> fMin(a_e-b_e, FRACT_BITS-1) > a_m);
- } else {
- return (a_m >> fMin(b_e-a_e, FRACT_BITS-1) < b_m);
- }
- }
- #endif
- #define LD_DATA_SCALING (64.0f)
- #define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
- /**
- * \brief deprecated. Use fLog2() instead.
- */
- FIXP_DBL CalcLdData(FIXP_DBL op);
- void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
- FIXP_DBL CalcInvLdData(FIXP_DBL op);
- void InitLdInt();
- FIXP_DBL CalcLdInt(INT i);
- extern const USHORT sqrt_tab[49];
- inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
- {
- UINT y = (INT)x;
- UCHAR is_zero=(y==0);
- INT zeros=fixnormz_D(y) & 0x1e;
- y<<=zeros;
- UINT idx=(y>>26)-16;
- USHORT frac=(y>>10)&0xffff;
- USHORT nfrac=0xffff^frac;
- UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
- t=t>>(zeros>>1);
- return(is_zero ? 0 : t);
- }
- inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
- {
- UINT y = (INT)x;
- INT e;
- if (x == (FIXP_DBL)0) {
- return x;
- }
- /* Normalize */
- e=fixnormz_D(y);
- y<<=e;
- e = *x_e - e + 2;
- /* Correct odd exponent. */
- if (e & 1) {
- y >>= 1;
- e ++;
- }
- /* Get square root */
- UINT idx=(y>>26)-16;
- USHORT frac=(y>>10)&0xffff;
- USHORT nfrac=0xffff^frac;
- UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
- /* Write back exponent */
- *x_e = e >> 1;
- return (FIXP_DBL)(LONG)(t>>1);
- }
- FIXP_DBL sqrtFixp(FIXP_DBL op);
- void InitInvSqrtTab();
- FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
- /*****************************************************************************
- functionname: invFixp
- description: delivers 1/(op)
- *****************************************************************************/
- inline FIXP_DBL invFixp(FIXP_DBL op)
- {
- INT tmp_exp ;
- FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
- FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
- return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
- }
- #if defined(__mips__) && (__GNUC__==2)
- #define FUNCTION_schur_div
- inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
- {
- INT result, tmp ;
- __asm__ ("srl %1, %2, 15\n"
- "div %3, %1\n" : "=lo" (result)
- : "%d" (tmp), "d" (denum) , "d" (num)
- : "hi" ) ;
- return result<<16 ;
- }
- /*###########################################################################################*/
- #elif defined(__mips__) && (__GNUC__==3)
- #define FUNCTION_schur_div
- inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
- {
- INT result, tmp;
- __asm__ ("srl %[tmp], %[denum], 15\n"
- "div %[result], %[num], %[tmp]\n"
- : [tmp] "+r" (tmp), [result]"=r"(result)
- : [denum]"r"(denum), [num]"r"(num)
- : "hi", "lo");
- return result << (DFRACT_BITS-16);
- }
- /*###########################################################################################*/
- #elif defined(SIMULATE_MIPS_DIV)
- #define FUNCTION_schur_div
- inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
- {
- FDK_ASSERT (count<=DFRACT_BITS-1);
- FDK_ASSERT (num>=(FIXP_DBL)0);
- FDK_ASSERT (denum>(FIXP_DBL)0);
- FDK_ASSERT (num <= denum);
- INT tmp = denum >> (count-1);
- INT result = 0;
- while (num > tmp)
- {
- num -= tmp;
- result++;
- }
- return result << (DFRACT_BITS-count);
- }
- /*###########################################################################################*/
- #endif /* target architecture selector */
- #if !defined(FUNCTION_schur_div)
- /**
- * \brief Divide two FIXP_DBL values with given precision.
- * \param num dividend
- * \param denum divisor
- * \param count amount of significant bits of the result (starting to the MSB)
- * \return num/divisor
- */
- FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
- #endif
- FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
- const FIXP_SGL op2);
- /**
- * \brief multiply two values with normalization, thus max precision.
- * Author: Robert Weidner
- *
- * \param f1 first factor
- * \param f2 secod factor
- * \param result_e pointer to an INT where the exponent of the result is stored into
- * \return mantissa of the product f1*f2
- */
- FIXP_DBL fMultNorm(
- FIXP_DBL f1,
- FIXP_DBL f2,
- INT *result_e
- );
- inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2)
- {
- FIXP_DBL m;
- INT e;
- m = fMultNorm(f1, f2, &e);
- m = scaleValueSaturate(m, e);
- return m;
- }
- /**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \return num/denum with exponent = 0
- */
- FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
- /**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \param result_e pointer to an INT where the exponent of the result is stored into
- * \return num/denum with exponent = *result_e
- */
- FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
- /**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \return num/denum with exponent = 0
- */
- FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
- /**
- * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
- * \param arg mantissa of the argument
- * \param arg_e exponent of the argument
- * \param result_e pointer to an INT to store the exponent of the result
- * \return the mantissa of the result.
- * \param
- */
- FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
- /**
- * \brief return 2 ^ (exp * 2^exp_e)
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
- FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
- /**
- * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \return mantissa of the result
- */
- FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
- /**
- * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
- * the need to compute log2() of constant values (when x is a constant).
- * \param ldx_m mantissa of log2() of x.
- * \param ldx_e exponent of log2() of x.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
- FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m,
- INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- );
- /**
- * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
- * the need to compute log2() of constant values (when x is a constant). This version
- * does not return an exponent, which is implicitly 0.
- * \param ldx_m mantissa of log2() of x.
- * \param ldx_e exponent of log2() of x.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \return mantissa of the result
- */
- FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m, INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e
- );
- /**
- * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
- * \param base_m mantissa of the base.
- * \param base_e exponent of the base.
- * \param exp_m mantissa of power to be calculated of the base.
- * \param exp_e exponent of power to be calculated of the base.
- * \param result_e pointer to a INT where the exponent of the result will be stored into.
- * \return mantissa of the result.
- */
- FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
- /**
- * \brief return (base * 2^base_e) ^ N
- * \param base mantissa of the base
- * \param base_e exponent of the base
- * \param power to be calculated of the base
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
- FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
- /**
- * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
- * \param x_m mantissa of the input value.
- * \param x_e exponent of the input value.
- * \param pointer to an INT where the exponent of the result is returned into.
- * \return mantissa of the result.
- */
- FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
- /**
- * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
- * \param x_m mantissa of the input value.
- * \param x_e exponent of the input value.
- * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
- */
- FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
- /**
- * \brief Add with saturation of the result.
- * \param a first summand
- * \param b second summand
- * \return saturated sum of a and b.
- */
- inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
- {
- LONG sum;
- sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
- sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
- return (FIXP_SGL)(SHORT)sum;
- }
- /**
- * \brief Add with saturation of the result.
- * \param a first summand
- * \param b second summand
- * \return saturated sum of a and b.
- */
- inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
- {
- LONG sum;
- sum = (LONG)(a>>1) + (LONG)(b>>1);
- sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
- return (FIXP_DBL)(LONG)(sum<<1);
- }
- //#define TEST_ROUNDING
- /*****************************************************************************
- array for 1/n, n=1..80
- ****************************************************************************/
- extern const FIXP_DBL invCount[80];
- LNK_SECTION_INITCODE
- inline void InitInvInt(void) {}
- /**
- * \brief Calculate the value of 1/i where i is a integer value. It supports
- * input values from 1 upto 80.
- * \param intValue Integer input value.
- * \param FIXP_DBL representation of 1/intValue
- */
- inline FIXP_DBL GetInvInt(int intValue)
- {
- FDK_ASSERT((intValue > 0) && (intValue < 80));
- FDK_ASSERT(intValue<80);
- return invCount[intValue];
- }
- #endif
|