xxhash.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. /*
  2. * xxHash - Fast Hash algorithm
  3. * Copyright (C) 2012-2016, Yann Collet
  4. *
  5. * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are
  9. * met:
  10. *
  11. * * Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * * Redistributions in binary form must reproduce the above
  14. * copyright notice, this list of conditions and the following disclaimer
  15. * in the documentation and/or other materials provided with the
  16. * distribution.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. *
  30. * You can contact the author at :
  31. * - xxHash homepage: http://www.xxhash.com
  32. * - xxHash source repository : https://github.com/Cyan4973/xxHash
  33. */
  34. /* *************************************
  35. * Tuning parameters
  36. ***************************************/
  37. /*!XXH_FORCE_MEMORY_ACCESS :
  38. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  39. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  40. * The below switch allow to select different access method for improved performance.
  41. * Method 0 (default) : use `memcpy()`. Safe and portable.
  42. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
  43. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  44. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
  45. * It can generate buggy code on targets which do not support unaligned memory accesses.
  46. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
  47. * See http://stackoverflow.com/a/32095106/646947 for details.
  48. * Prefer these methods in priority order (0 > 1 > 2)
  49. */
  50. #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  51. # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
  52. # define XXH_FORCE_MEMORY_ACCESS 2
  53. # elif defined(__INTEL_COMPILER) || \
  54. (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
  55. # define XXH_FORCE_MEMORY_ACCESS 1
  56. # endif
  57. #endif
  58. /*!XXH_ACCEPT_NULL_INPUT_POINTER :
  59. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  60. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  61. * By default, this option is disabled. To enable it, uncomment below define :
  62. */
  63. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  64. /*!XXH_FORCE_NATIVE_FORMAT :
  65. * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  66. * Results are therefore identical for little-endian and big-endian CPU.
  67. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  68. * Should endian-independence be of no importance for your application, you may set the #define below to 1,
  69. * to improve speed for Big-endian CPU.
  70. * This option has no impact on Little_Endian CPU.
  71. */
  72. #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
  73. # define XXH_FORCE_NATIVE_FORMAT 0
  74. #endif
  75. /*!XXH_FORCE_ALIGN_CHECK :
  76. * This is a minor performance trick, only useful with lots of very small keys.
  77. * It means : check for aligned/unaligned input.
  78. * The check costs one initial branch per hash;
  79. * set it to 0 when the input is guaranteed to be aligned,
  80. * or when alignment doesn't matter for performance.
  81. */
  82. #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
  83. # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  84. # define XXH_FORCE_ALIGN_CHECK 0
  85. # else
  86. # define XXH_FORCE_ALIGN_CHECK 1
  87. # endif
  88. #endif
  89. /* *************************************
  90. * Includes & Memory related functions
  91. ***************************************/
  92. /*! Modify the local functions below should you wish to use some other memory routines
  93. * for malloc(), free() */
  94. #include <stdlib.h>
  95. static void* XXH_malloc(size_t s) { return malloc(s); }
  96. static void XXH_free (void* p) { free(p); }
  97. /*! and for memcpy() */
  98. #include <string.h>
  99. static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
  100. #define XXH_STATIC_LINKING_ONLY
  101. #include "xxhash.h"
  102. /* *************************************
  103. * Compiler Specific Options
  104. ***************************************/
  105. #ifdef _MSC_VER /* Visual Studio */
  106. # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
  107. # define FORCE_INLINE static __forceinline
  108. #else
  109. # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
  110. # ifdef __GNUC__
  111. # define FORCE_INLINE static inline __attribute__((always_inline))
  112. # else
  113. # define FORCE_INLINE static inline
  114. # endif
  115. # else
  116. # define FORCE_INLINE static
  117. # endif /* __STDC_VERSION__ */
  118. #endif
  119. /* *************************************
  120. * Basic Types
  121. ***************************************/
  122. #ifndef MEM_MODULE
  123. # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  124. # include <stdint.h>
  125. typedef uint8_t BYTE;
  126. typedef uint16_t U16;
  127. typedef uint32_t U32;
  128. # else
  129. typedef unsigned char BYTE;
  130. typedef unsigned short U16;
  131. typedef unsigned int U32;
  132. # endif
  133. #endif
  134. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  135. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  136. static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
  137. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  138. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  139. /* currently only defined for gcc and icc */
  140. typedef union { U32 u32; } __attribute__((packed)) unalign;
  141. static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
  142. #else
  143. /* portable and safe solution. Generally efficient.
  144. * see : http://stackoverflow.com/a/32095106/646947
  145. */
  146. static U32 XXH_read32(const void* memPtr)
  147. {
  148. U32 val;
  149. memcpy(&val, memPtr, sizeof(val));
  150. return val;
  151. }
  152. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  153. /* ****************************************
  154. * Compiler-specific Functions and Macros
  155. ******************************************/
  156. #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  157. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  158. #if defined(_MSC_VER)
  159. # define XXH_rotl32(x,r) _rotl(x,r)
  160. # define XXH_rotl64(x,r) _rotl64(x,r)
  161. #else
  162. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  163. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  164. #endif
  165. #if defined(_MSC_VER) /* Visual Studio */
  166. # define XXH_swap32 _byteswap_ulong
  167. #elif XXH_GCC_VERSION >= 403
  168. # define XXH_swap32 __builtin_bswap32
  169. #else
  170. static U32 XXH_swap32 (U32 x)
  171. {
  172. return ((x << 24) & 0xff000000 ) |
  173. ((x << 8) & 0x00ff0000 ) |
  174. ((x >> 8) & 0x0000ff00 ) |
  175. ((x >> 24) & 0x000000ff );
  176. }
  177. #endif
  178. /* *************************************
  179. * Architecture Macros
  180. ***************************************/
  181. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  182. /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
  183. #ifndef XXH_CPU_LITTLE_ENDIAN
  184. static const int g_one = 1;
  185. # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
  186. #endif
  187. /* ***************************
  188. * Memory reads
  189. *****************************/
  190. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  191. FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  192. {
  193. if (align==XXH_unaligned)
  194. return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
  195. else
  196. return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
  197. }
  198. FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  199. {
  200. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  201. }
  202. static U32 XXH_readBE32(const void* ptr)
  203. {
  204. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
  205. }
  206. /* *************************************
  207. * Macros
  208. ***************************************/
  209. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
  210. XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
  211. /* *******************************************************************
  212. * 32-bits hash functions
  213. *********************************************************************/
  214. static const U32 PRIME32_1 = 2654435761U;
  215. static const U32 PRIME32_2 = 2246822519U;
  216. static const U32 PRIME32_3 = 3266489917U;
  217. static const U32 PRIME32_4 = 668265263U;
  218. static const U32 PRIME32_5 = 374761393U;
  219. static U32 XXH32_round(U32 seed, U32 input)
  220. {
  221. seed += input * PRIME32_2;
  222. seed = XXH_rotl32(seed, 13);
  223. seed *= PRIME32_1;
  224. return seed;
  225. }
  226. FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  227. {
  228. const BYTE* p = (const BYTE*)input;
  229. const BYTE* bEnd = p + len;
  230. U32 h32;
  231. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  232. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  233. if (p==NULL) {
  234. len=0;
  235. bEnd=p=(const BYTE*)(size_t)16;
  236. }
  237. #endif
  238. if (len>=16) {
  239. const BYTE* const limit = bEnd - 16;
  240. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  241. U32 v2 = seed + PRIME32_2;
  242. U32 v3 = seed + 0;
  243. U32 v4 = seed - PRIME32_1;
  244. do {
  245. v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
  246. v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
  247. v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
  248. v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
  249. } while (p<=limit);
  250. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  251. } else {
  252. h32 = seed + PRIME32_5;
  253. }
  254. h32 += (U32) len;
  255. while (p+4<=bEnd) {
  256. h32 += XXH_get32bits(p) * PRIME32_3;
  257. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  258. p+=4;
  259. }
  260. while (p<bEnd) {
  261. h32 += (*p) * PRIME32_5;
  262. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  263. p++;
  264. }
  265. h32 ^= h32 >> 15;
  266. h32 *= PRIME32_2;
  267. h32 ^= h32 >> 13;
  268. h32 *= PRIME32_3;
  269. h32 ^= h32 >> 16;
  270. return h32;
  271. }
  272. XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
  273. {
  274. #if 0
  275. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  276. XXH32_state_t state;
  277. XXH32_reset(&state, seed);
  278. XXH32_update(&state, input, len);
  279. return XXH32_digest(&state);
  280. #else
  281. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  282. if (XXH_FORCE_ALIGN_CHECK) {
  283. if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
  284. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  285. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  286. else
  287. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  288. } }
  289. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  290. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  291. else
  292. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  293. #endif
  294. }
  295. /*====== Hash streaming ======*/
  296. XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
  297. {
  298. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  299. }
  300. XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  301. {
  302. XXH_free(statePtr);
  303. return XXH_OK;
  304. }
  305. XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
  306. {
  307. memcpy(dstState, srcState, sizeof(*dstState));
  308. }
  309. XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
  310. {
  311. XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  312. memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
  313. state.v1 = seed + PRIME32_1 + PRIME32_2;
  314. state.v2 = seed + PRIME32_2;
  315. state.v3 = seed + 0;
  316. state.v4 = seed - PRIME32_1;
  317. memcpy(statePtr, &state, sizeof(state));
  318. return XXH_OK;
  319. }
  320. FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
  321. {
  322. const BYTE* p = (const BYTE*)input;
  323. const BYTE* const bEnd = p + len;
  324. if (input==NULL)
  325. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  326. return XXH_OK;
  327. #else
  328. return XXH_ERROR;
  329. #endif
  330. state->total_len_32 += (unsigned)len;
  331. state->large_len |= (len>=16) | (state->total_len_32>=16);
  332. if (state->memsize + len < 16) { /* fill in tmp buffer */
  333. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  334. state->memsize += (unsigned)len;
  335. return XXH_OK;
  336. }
  337. if (state->memsize) { /* some data left from previous update */
  338. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  339. { const U32* p32 = state->mem32;
  340. state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
  341. state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
  342. state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
  343. state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian));
  344. }
  345. p += 16-state->memsize;
  346. state->memsize = 0;
  347. }
  348. if (p <= bEnd-16) {
  349. const BYTE* const limit = bEnd - 16;
  350. U32 v1 = state->v1;
  351. U32 v2 = state->v2;
  352. U32 v3 = state->v3;
  353. U32 v4 = state->v4;
  354. do {
  355. v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
  356. v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
  357. v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
  358. v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
  359. } while (p<=limit);
  360. state->v1 = v1;
  361. state->v2 = v2;
  362. state->v3 = v3;
  363. state->v4 = v4;
  364. }
  365. if (p < bEnd) {
  366. XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
  367. state->memsize = (unsigned)(bEnd-p);
  368. }
  369. return XXH_OK;
  370. }
  371. XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  372. {
  373. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  374. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  375. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  376. else
  377. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  378. }
  379. FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
  380. {
  381. const BYTE * p = (const BYTE*)state->mem32;
  382. const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
  383. U32 h32;
  384. if (state->large_len) {
  385. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  386. } else {
  387. h32 = state->v3 /* == seed */ + PRIME32_5;
  388. }
  389. h32 += state->total_len_32;
  390. while (p+4<=bEnd) {
  391. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  392. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  393. p+=4;
  394. }
  395. while (p<bEnd) {
  396. h32 += (*p) * PRIME32_5;
  397. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  398. p++;
  399. }
  400. h32 ^= h32 >> 15;
  401. h32 *= PRIME32_2;
  402. h32 ^= h32 >> 13;
  403. h32 *= PRIME32_3;
  404. h32 ^= h32 >> 16;
  405. return h32;
  406. }
  407. XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
  408. {
  409. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  410. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  411. return XXH32_digest_endian(state_in, XXH_littleEndian);
  412. else
  413. return XXH32_digest_endian(state_in, XXH_bigEndian);
  414. }
  415. /*====== Canonical representation ======*/
  416. /*! Default XXH result types are basic unsigned 32 and 64 bits.
  417. * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
  418. * These functions allow transformation of hash result into and from its canonical format.
  419. * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
  420. */
  421. XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
  422. {
  423. XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
  424. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
  425. memcpy(dst, &hash, sizeof(*dst));
  426. }
  427. XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
  428. {
  429. return XXH_readBE32(src);
  430. }
  431. #ifndef XXH_NO_LONG_LONG
  432. /* *******************************************************************
  433. * 64-bits hash functions
  434. *********************************************************************/
  435. /*====== Memory access ======*/
  436. #ifndef MEM_MODULE
  437. # define MEM_MODULE
  438. # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  439. # include <stdint.h>
  440. typedef uint64_t U64;
  441. # else
  442. typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
  443. # endif
  444. #endif
  445. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  446. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  447. static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
  448. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  449. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  450. /* currently only defined for gcc and icc */
  451. typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
  452. static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
  453. #else
  454. /* portable and safe solution. Generally efficient.
  455. * see : http://stackoverflow.com/a/32095106/646947
  456. */
  457. static U64 XXH_read64(const void* memPtr)
  458. {
  459. U64 val;
  460. memcpy(&val, memPtr, sizeof(val));
  461. return val;
  462. }
  463. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  464. #if defined(_MSC_VER) /* Visual Studio */
  465. # define XXH_swap64 _byteswap_uint64
  466. #elif XXH_GCC_VERSION >= 403
  467. # define XXH_swap64 __builtin_bswap64
  468. #else
  469. static U64 XXH_swap64 (U64 x)
  470. {
  471. return ((x << 56) & 0xff00000000000000ULL) |
  472. ((x << 40) & 0x00ff000000000000ULL) |
  473. ((x << 24) & 0x0000ff0000000000ULL) |
  474. ((x << 8) & 0x000000ff00000000ULL) |
  475. ((x >> 8) & 0x00000000ff000000ULL) |
  476. ((x >> 24) & 0x0000000000ff0000ULL) |
  477. ((x >> 40) & 0x000000000000ff00ULL) |
  478. ((x >> 56) & 0x00000000000000ffULL);
  479. }
  480. #endif
  481. FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  482. {
  483. if (align==XXH_unaligned)
  484. return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
  485. else
  486. return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
  487. }
  488. FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  489. {
  490. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  491. }
  492. static U64 XXH_readBE64(const void* ptr)
  493. {
  494. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
  495. }
  496. /*====== xxh64 ======*/
  497. static const U64 PRIME64_1 = 11400714785074694791ULL;
  498. static const U64 PRIME64_2 = 14029467366897019727ULL;
  499. static const U64 PRIME64_3 = 1609587929392839161ULL;
  500. static const U64 PRIME64_4 = 9650029242287828579ULL;
  501. static const U64 PRIME64_5 = 2870177450012600261ULL;
  502. static U64 XXH64_round(U64 acc, U64 input)
  503. {
  504. acc += input * PRIME64_2;
  505. acc = XXH_rotl64(acc, 31);
  506. acc *= PRIME64_1;
  507. return acc;
  508. }
  509. static U64 XXH64_mergeRound(U64 acc, U64 val)
  510. {
  511. val = XXH64_round(0, val);
  512. acc ^= val;
  513. acc = acc * PRIME64_1 + PRIME64_4;
  514. return acc;
  515. }
  516. FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  517. {
  518. const BYTE* p = (const BYTE*)input;
  519. const BYTE* bEnd = p + len;
  520. U64 h64;
  521. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  522. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  523. if (p==NULL) {
  524. len=0;
  525. bEnd=p=(const BYTE*)(size_t)32;
  526. }
  527. #endif
  528. if (len>=32) {
  529. const BYTE* const limit = bEnd - 32;
  530. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  531. U64 v2 = seed + PRIME64_2;
  532. U64 v3 = seed + 0;
  533. U64 v4 = seed - PRIME64_1;
  534. do {
  535. v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
  536. v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
  537. v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
  538. v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
  539. } while (p<=limit);
  540. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  541. h64 = XXH64_mergeRound(h64, v1);
  542. h64 = XXH64_mergeRound(h64, v2);
  543. h64 = XXH64_mergeRound(h64, v3);
  544. h64 = XXH64_mergeRound(h64, v4);
  545. } else {
  546. h64 = seed + PRIME64_5;
  547. }
  548. h64 += (U64) len;
  549. while (p+8<=bEnd) {
  550. U64 const k1 = XXH64_round(0, XXH_get64bits(p));
  551. h64 ^= k1;
  552. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  553. p+=8;
  554. }
  555. if (p+4<=bEnd) {
  556. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  557. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  558. p+=4;
  559. }
  560. while (p<bEnd) {
  561. h64 ^= (*p) * PRIME64_5;
  562. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  563. p++;
  564. }
  565. h64 ^= h64 >> 33;
  566. h64 *= PRIME64_2;
  567. h64 ^= h64 >> 29;
  568. h64 *= PRIME64_3;
  569. h64 ^= h64 >> 32;
  570. return h64;
  571. }
  572. XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  573. {
  574. #if 0
  575. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  576. XXH64_state_t state;
  577. XXH64_reset(&state, seed);
  578. XXH64_update(&state, input, len);
  579. return XXH64_digest(&state);
  580. #else
  581. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  582. if (XXH_FORCE_ALIGN_CHECK) {
  583. if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
  584. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  585. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  586. else
  587. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  588. } }
  589. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  590. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  591. else
  592. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  593. #endif
  594. }
  595. /*====== Hash Streaming ======*/
  596. XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
  597. {
  598. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  599. }
  600. XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  601. {
  602. XXH_free(statePtr);
  603. return XXH_OK;
  604. }
  605. XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
  606. {
  607. memcpy(dstState, srcState, sizeof(*dstState));
  608. }
  609. XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
  610. {
  611. XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  612. memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
  613. state.v1 = seed + PRIME64_1 + PRIME64_2;
  614. state.v2 = seed + PRIME64_2;
  615. state.v3 = seed + 0;
  616. state.v4 = seed - PRIME64_1;
  617. memcpy(statePtr, &state, sizeof(state));
  618. return XXH_OK;
  619. }
  620. FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
  621. {
  622. const BYTE* p = (const BYTE*)input;
  623. const BYTE* const bEnd = p + len;
  624. if (input==NULL)
  625. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  626. return XXH_OK;
  627. #else
  628. return XXH_ERROR;
  629. #endif
  630. state->total_len += len;
  631. if (state->memsize + len < 32) { /* fill in tmp buffer */
  632. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  633. state->memsize += (U32)len;
  634. return XXH_OK;
  635. }
  636. if (state->memsize) { /* tmp buffer is full */
  637. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  638. state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
  639. state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
  640. state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
  641. state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
  642. p += 32-state->memsize;
  643. state->memsize = 0;
  644. }
  645. if (p+32 <= bEnd) {
  646. const BYTE* const limit = bEnd - 32;
  647. U64 v1 = state->v1;
  648. U64 v2 = state->v2;
  649. U64 v3 = state->v3;
  650. U64 v4 = state->v4;
  651. do {
  652. v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
  653. v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
  654. v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
  655. v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
  656. } while (p<=limit);
  657. state->v1 = v1;
  658. state->v2 = v2;
  659. state->v3 = v3;
  660. state->v4 = v4;
  661. }
  662. if (p < bEnd) {
  663. XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
  664. state->memsize = (unsigned)(bEnd-p);
  665. }
  666. return XXH_OK;
  667. }
  668. XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  669. {
  670. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  671. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  672. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  673. else
  674. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  675. }
  676. FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
  677. {
  678. const BYTE * p = (const BYTE*)state->mem64;
  679. const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
  680. U64 h64;
  681. if (state->total_len >= 32) {
  682. U64 const v1 = state->v1;
  683. U64 const v2 = state->v2;
  684. U64 const v3 = state->v3;
  685. U64 const v4 = state->v4;
  686. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  687. h64 = XXH64_mergeRound(h64, v1);
  688. h64 = XXH64_mergeRound(h64, v2);
  689. h64 = XXH64_mergeRound(h64, v3);
  690. h64 = XXH64_mergeRound(h64, v4);
  691. } else {
  692. h64 = state->v3 + PRIME64_5;
  693. }
  694. h64 += (U64) state->total_len;
  695. while (p+8<=bEnd) {
  696. U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
  697. h64 ^= k1;
  698. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  699. p+=8;
  700. }
  701. if (p+4<=bEnd) {
  702. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  703. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  704. p+=4;
  705. }
  706. while (p<bEnd) {
  707. h64 ^= (*p) * PRIME64_5;
  708. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  709. p++;
  710. }
  711. h64 ^= h64 >> 33;
  712. h64 *= PRIME64_2;
  713. h64 ^= h64 >> 29;
  714. h64 *= PRIME64_3;
  715. h64 ^= h64 >> 32;
  716. return h64;
  717. }
  718. XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  719. {
  720. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  721. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  722. return XXH64_digest_endian(state_in, XXH_littleEndian);
  723. else
  724. return XXH64_digest_endian(state_in, XXH_bigEndian);
  725. }
  726. /*====== Canonical representation ======*/
  727. XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
  728. {
  729. XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
  730. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
  731. memcpy(dst, &hash, sizeof(*dst));
  732. }
  733. XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
  734. {
  735. return XXH_readBE64(src);
  736. }
  737. #endif /* XXH_NO_LONG_LONG */