ecdsa.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * Elliptic curve DSA
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. /*
  22. * References:
  23. *
  24. * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
  25. */
  26. #if !defined(MBEDTLS_CONFIG_FILE)
  27. #include "mbedtls/config.h"
  28. #else
  29. #include MBEDTLS_CONFIG_FILE
  30. #endif
  31. #if defined(MBEDTLS_ECDSA_C)
  32. #include "mbedtls/ecdsa.h"
  33. #include "mbedtls/asn1write.h"
  34. #include <string.h>
  35. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  36. #include "mbedtls/hmac_drbg.h"
  37. #endif
  38. /*
  39. * Derive a suitable integer for group grp from a buffer of length len
  40. * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
  41. */
  42. static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x,
  43. const unsigned char *buf, size_t blen )
  44. {
  45. int ret;
  46. size_t n_size = ( grp->nbits + 7 ) / 8;
  47. size_t use_size = blen > n_size ? n_size : blen;
  48. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) );
  49. if( use_size * 8 > grp->nbits )
  50. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) );
  51. /* While at it, reduce modulo N */
  52. if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 )
  53. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) );
  54. cleanup:
  55. return( ret );
  56. }
  57. #if !defined(MBEDTLS_ECDSA_SIGN_ALT)
  58. /*
  59. * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
  60. * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
  61. */
  62. int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
  63. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  64. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  65. {
  66. int ret, key_tries, sign_tries, blind_tries;
  67. mbedtls_ecp_point R;
  68. mbedtls_mpi k, e, t;
  69. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  70. if( grp->N.p == NULL )
  71. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  72. /* Make sure d is in range 1..n-1 */
  73. if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
  74. return( MBEDTLS_ERR_ECP_INVALID_KEY );
  75. mbedtls_ecp_point_init( &R );
  76. mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t );
  77. sign_tries = 0;
  78. do
  79. {
  80. /*
  81. * Steps 1-3: generate a suitable ephemeral keypair
  82. * and set r = xR mod n
  83. */
  84. key_tries = 0;
  85. do
  86. {
  87. MBEDTLS_MPI_CHK( mbedtls_ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
  88. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) );
  89. if( key_tries++ > 10 )
  90. {
  91. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  92. goto cleanup;
  93. }
  94. }
  95. while( mbedtls_mpi_cmp_int( r, 0 ) == 0 );
  96. /*
  97. * Step 5: derive MPI from hashed message
  98. */
  99. MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  100. /*
  101. * Generate a random value to blind inv_mod in next step,
  102. * avoiding a potential timing leak.
  103. */
  104. blind_tries = 0;
  105. do
  106. {
  107. size_t n_size = ( grp->nbits + 7 ) / 8;
  108. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng, p_rng ) );
  109. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) );
  110. /* See mbedtls_ecp_gen_keypair() */
  111. if( ++blind_tries > 30 )
  112. return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
  113. }
  114. while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 ||
  115. mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 );
  116. /*
  117. * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
  118. */
  119. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) );
  120. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) );
  121. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) );
  122. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) );
  123. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) );
  124. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) );
  125. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) );
  126. if( sign_tries++ > 10 )
  127. {
  128. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  129. goto cleanup;
  130. }
  131. }
  132. while( mbedtls_mpi_cmp_int( s, 0 ) == 0 );
  133. cleanup:
  134. mbedtls_ecp_point_free( &R );
  135. mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t );
  136. return( ret );
  137. }
  138. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  139. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  140. /*
  141. * Deterministic signature wrapper
  142. */
  143. int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
  144. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  145. mbedtls_md_type_t md_alg )
  146. {
  147. int ret;
  148. mbedtls_hmac_drbg_context rng_ctx;
  149. unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
  150. size_t grp_len = ( grp->nbits + 7 ) / 8;
  151. const mbedtls_md_info_t *md_info;
  152. mbedtls_mpi h;
  153. if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL )
  154. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  155. mbedtls_mpi_init( &h );
  156. mbedtls_hmac_drbg_init( &rng_ctx );
  157. /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
  158. MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) );
  159. MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
  160. MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) );
  161. mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len );
  162. ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen,
  163. mbedtls_hmac_drbg_random, &rng_ctx );
  164. cleanup:
  165. mbedtls_hmac_drbg_free( &rng_ctx );
  166. mbedtls_mpi_free( &h );
  167. return( ret );
  168. }
  169. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  170. #if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  171. /*
  172. * Verify ECDSA signature of hashed message (SEC1 4.1.4)
  173. * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
  174. */
  175. int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
  176. const unsigned char *buf, size_t blen,
  177. const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s)
  178. {
  179. int ret;
  180. mbedtls_mpi e, s_inv, u1, u2;
  181. mbedtls_ecp_point R;
  182. mbedtls_ecp_point_init( &R );
  183. mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 );
  184. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  185. if( grp->N.p == NULL )
  186. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  187. /*
  188. * Step 1: make sure r and s are in range 1..n-1
  189. */
  190. if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 ||
  191. mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 )
  192. {
  193. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  194. goto cleanup;
  195. }
  196. /*
  197. * Additional precaution: make sure Q is valid
  198. */
  199. MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) );
  200. /*
  201. * Step 3: derive MPI from hashed message
  202. */
  203. MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  204. /*
  205. * Step 4: u1 = e / s mod n, u2 = r / s mod n
  206. */
  207. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) );
  208. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) );
  209. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) );
  210. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) );
  211. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) );
  212. /*
  213. * Step 5: R = u1 G + u2 Q
  214. *
  215. * Since we're not using any secret data, no need to pass a RNG to
  216. * mbedtls_ecp_mul() for countermesures.
  217. */
  218. MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) );
  219. if( mbedtls_ecp_is_zero( &R ) )
  220. {
  221. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  222. goto cleanup;
  223. }
  224. /*
  225. * Step 6: convert xR to an integer (no-op)
  226. * Step 7: reduce xR mod n (gives v)
  227. */
  228. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
  229. /*
  230. * Step 8: check if v (that is, R.X) is equal to r
  231. */
  232. if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 )
  233. {
  234. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  235. goto cleanup;
  236. }
  237. cleanup:
  238. mbedtls_ecp_point_free( &R );
  239. mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 );
  240. return( ret );
  241. }
  242. #endif /* MBEDTLS_ECDSA_VERIFY_ALT */
  243. /*
  244. * Convert a signature (given by context) to ASN.1
  245. */
  246. static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
  247. unsigned char *sig, size_t *slen )
  248. {
  249. int ret;
  250. unsigned char buf[MBEDTLS_ECDSA_MAX_LEN];
  251. unsigned char *p = buf + sizeof( buf );
  252. size_t len = 0;
  253. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
  254. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
  255. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
  256. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
  257. MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
  258. memcpy( sig, p, len );
  259. *slen = len;
  260. return( 0 );
  261. }
  262. /*
  263. * Compute and write signature
  264. */
  265. int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
  266. const unsigned char *hash, size_t hlen,
  267. unsigned char *sig, size_t *slen,
  268. int (*f_rng)(void *, unsigned char *, size_t),
  269. void *p_rng )
  270. {
  271. int ret;
  272. mbedtls_mpi r, s;
  273. mbedtls_mpi_init( &r );
  274. mbedtls_mpi_init( &s );
  275. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  276. (void) f_rng;
  277. (void) p_rng;
  278. MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ctx->grp, &r, &s, &ctx->d,
  279. hash, hlen, md_alg ) );
  280. #else
  281. (void) md_alg;
  282. MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d,
  283. hash, hlen, f_rng, p_rng ) );
  284. #endif
  285. MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) );
  286. cleanup:
  287. mbedtls_mpi_free( &r );
  288. mbedtls_mpi_free( &s );
  289. return( ret );
  290. }
  291. #if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \
  292. defined(MBEDTLS_ECDSA_DETERMINISTIC)
  293. int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
  294. const unsigned char *hash, size_t hlen,
  295. unsigned char *sig, size_t *slen,
  296. mbedtls_md_type_t md_alg )
  297. {
  298. return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen,
  299. NULL, NULL ) );
  300. }
  301. #endif
  302. /*
  303. * Read and check signature
  304. */
  305. int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
  306. const unsigned char *hash, size_t hlen,
  307. const unsigned char *sig, size_t slen )
  308. {
  309. int ret;
  310. unsigned char *p = (unsigned char *) sig;
  311. const unsigned char *end = sig + slen;
  312. size_t len;
  313. mbedtls_mpi r, s;
  314. mbedtls_mpi_init( &r );
  315. mbedtls_mpi_init( &s );
  316. if( ( ret = mbedtls_asn1_get_tag( &p, end, &len,
  317. MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
  318. {
  319. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  320. goto cleanup;
  321. }
  322. if( p + len != end )
  323. {
  324. ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA +
  325. MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
  326. goto cleanup;
  327. }
  328. if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 ||
  329. ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 )
  330. {
  331. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  332. goto cleanup;
  333. }
  334. if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen,
  335. &ctx->Q, &r, &s ) ) != 0 )
  336. goto cleanup;
  337. /* At this point we know that the buffer starts with a valid signature.
  338. * Return 0 if the buffer just contains the signature, and a specific
  339. * error code if the valid signature is followed by more data. */
  340. if( p != end )
  341. ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
  342. cleanup:
  343. mbedtls_mpi_free( &r );
  344. mbedtls_mpi_free( &s );
  345. return( ret );
  346. }
  347. #if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
  348. /*
  349. * Generate key pair
  350. */
  351. int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
  352. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  353. {
  354. return( mbedtls_ecp_group_load( &ctx->grp, gid ) ||
  355. mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) );
  356. }
  357. #endif /* MBEDTLS_ECDSA_GENKEY_ALT */
  358. /*
  359. * Set context from an mbedtls_ecp_keypair
  360. */
  361. int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key )
  362. {
  363. int ret;
  364. if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
  365. ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 ||
  366. ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
  367. {
  368. mbedtls_ecdsa_free( ctx );
  369. }
  370. return( ret );
  371. }
  372. /*
  373. * Initialize context
  374. */
  375. void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx )
  376. {
  377. mbedtls_ecp_keypair_init( ctx );
  378. }
  379. /*
  380. * Free context
  381. */
  382. void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx )
  383. {
  384. mbedtls_ecp_keypair_free( ctx );
  385. }
  386. #endif /* MBEDTLS_ECDSA_C */