poly1305.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. /**
  2. * \file poly1305.c
  3. *
  4. * \brief Poly1305 authentication algorithm.
  5. *
  6. * Copyright (C) 2006-2016, ARM Limited, All Rights Reserved
  7. * SPDX-License-Identifier: Apache-2.0
  8. *
  9. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  10. * not use this file except in compliance with the License.
  11. * You may obtain a copy of the License at
  12. *
  13. * http://www.apache.org/licenses/LICENSE-2.0
  14. *
  15. * Unless required by applicable law or agreed to in writing, software
  16. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  17. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  18. * See the License for the specific language governing permissions and
  19. * limitations under the License.
  20. *
  21. * This file is part of mbed TLS (https://tls.mbed.org)
  22. */
  23. #if !defined(MBEDTLS_CONFIG_FILE)
  24. #include "mbedtls/config.h"
  25. #else
  26. #include MBEDTLS_CONFIG_FILE
  27. #endif
  28. #if defined(MBEDTLS_POLY1305_C)
  29. #include "mbedtls/poly1305.h"
  30. #include "mbedtls/platform_util.h"
  31. #include <string.h>
  32. #if defined(MBEDTLS_SELF_TEST)
  33. #if defined(MBEDTLS_PLATFORM_C)
  34. #include "mbedtls/platform.h"
  35. #else
  36. #include <stdio.h>
  37. #define mbedtls_printf printf
  38. #endif /* MBEDTLS_PLATFORM_C */
  39. #endif /* MBEDTLS_SELF_TEST */
  40. #if !defined(MBEDTLS_POLY1305_ALT)
  41. #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
  42. !defined(inline) && !defined(__cplusplus)
  43. #define inline __inline
  44. #endif
  45. #define POLY1305_BLOCK_SIZE_BYTES ( 16U )
  46. #define BYTES_TO_U32_LE( data, offset ) \
  47. ( (uint32_t) data[offset] \
  48. | (uint32_t) ( (uint32_t) data[( offset ) + 1] << 8 ) \
  49. | (uint32_t) ( (uint32_t) data[( offset ) + 2] << 16 ) \
  50. | (uint32_t) ( (uint32_t) data[( offset ) + 3] << 24 ) \
  51. )
  52. /*
  53. * Our implementation is tuned for 32-bit platforms with a 64-bit multiplier.
  54. * However we provided an alternative for platforms without such a multiplier.
  55. */
  56. #if defined(MBEDTLS_NO_64BIT_MULTIPLICATION)
  57. static uint64_t mul64( uint32_t a, uint32_t b )
  58. {
  59. /* a = al + 2**16 ah, b = bl + 2**16 bh */
  60. const uint16_t al = (uint16_t) a;
  61. const uint16_t bl = (uint16_t) b;
  62. const uint16_t ah = a >> 16;
  63. const uint16_t bh = b >> 16;
  64. /* ab = al*bl + 2**16 (ah*bl + bl*bh) + 2**32 ah*bh */
  65. const uint32_t lo = (uint32_t) al * bl;
  66. const uint64_t me = (uint64_t)( (uint32_t) ah * bl ) + (uint32_t) al * bh;
  67. const uint32_t hi = (uint32_t) ah * bh;
  68. return( lo + ( me << 16 ) + ( (uint64_t) hi << 32 ) );
  69. }
  70. #else
  71. static inline uint64_t mul64( uint32_t a, uint32_t b )
  72. {
  73. return( (uint64_t) a * b );
  74. }
  75. #endif
  76. /**
  77. * \brief Process blocks with Poly1305.
  78. *
  79. * \param ctx The Poly1305 context.
  80. * \param nblocks Number of blocks to process. Note that this
  81. * function only processes full blocks.
  82. * \param input Buffer containing the input block(s).
  83. * \param needs_padding Set to 0 if the padding bit has already been
  84. * applied to the input data before calling this
  85. * function. Otherwise, set this parameter to 1.
  86. */
  87. static void poly1305_process( mbedtls_poly1305_context *ctx,
  88. size_t nblocks,
  89. const unsigned char *input,
  90. uint32_t needs_padding )
  91. {
  92. uint64_t d0, d1, d2, d3;
  93. uint32_t acc0, acc1, acc2, acc3, acc4;
  94. uint32_t r0, r1, r2, r3;
  95. uint32_t rs1, rs2, rs3;
  96. size_t offset = 0U;
  97. size_t i;
  98. r0 = ctx->r[0];
  99. r1 = ctx->r[1];
  100. r2 = ctx->r[2];
  101. r3 = ctx->r[3];
  102. rs1 = r1 + ( r1 >> 2U );
  103. rs2 = r2 + ( r2 >> 2U );
  104. rs3 = r3 + ( r3 >> 2U );
  105. acc0 = ctx->acc[0];
  106. acc1 = ctx->acc[1];
  107. acc2 = ctx->acc[2];
  108. acc3 = ctx->acc[3];
  109. acc4 = ctx->acc[4];
  110. /* Process full blocks */
  111. for( i = 0U; i < nblocks; i++ )
  112. {
  113. /* The input block is treated as a 128-bit little-endian integer */
  114. d0 = BYTES_TO_U32_LE( input, offset + 0 );
  115. d1 = BYTES_TO_U32_LE( input, offset + 4 );
  116. d2 = BYTES_TO_U32_LE( input, offset + 8 );
  117. d3 = BYTES_TO_U32_LE( input, offset + 12 );
  118. /* Compute: acc += (padded) block as a 130-bit integer */
  119. d0 += (uint64_t) acc0;
  120. d1 += (uint64_t) acc1 + ( d0 >> 32U );
  121. d2 += (uint64_t) acc2 + ( d1 >> 32U );
  122. d3 += (uint64_t) acc3 + ( d2 >> 32U );
  123. acc0 = (uint32_t) d0;
  124. acc1 = (uint32_t) d1;
  125. acc2 = (uint32_t) d2;
  126. acc3 = (uint32_t) d3;
  127. acc4 += (uint32_t) ( d3 >> 32U ) + needs_padding;
  128. /* Compute: acc *= r */
  129. d0 = mul64( acc0, r0 ) +
  130. mul64( acc1, rs3 ) +
  131. mul64( acc2, rs2 ) +
  132. mul64( acc3, rs1 );
  133. d1 = mul64( acc0, r1 ) +
  134. mul64( acc1, r0 ) +
  135. mul64( acc2, rs3 ) +
  136. mul64( acc3, rs2 ) +
  137. mul64( acc4, rs1 );
  138. d2 = mul64( acc0, r2 ) +
  139. mul64( acc1, r1 ) +
  140. mul64( acc2, r0 ) +
  141. mul64( acc3, rs3 ) +
  142. mul64( acc4, rs2 );
  143. d3 = mul64( acc0, r3 ) +
  144. mul64( acc1, r2 ) +
  145. mul64( acc2, r1 ) +
  146. mul64( acc3, r0 ) +
  147. mul64( acc4, rs3 );
  148. acc4 *= r0;
  149. /* Compute: acc %= (2^130 - 5) (partial remainder) */
  150. d1 += ( d0 >> 32 );
  151. d2 += ( d1 >> 32 );
  152. d3 += ( d2 >> 32 );
  153. acc0 = (uint32_t) d0;
  154. acc1 = (uint32_t) d1;
  155. acc2 = (uint32_t) d2;
  156. acc3 = (uint32_t) d3;
  157. acc4 = (uint32_t) ( d3 >> 32 ) + acc4;
  158. d0 = (uint64_t) acc0 + ( acc4 >> 2 ) + ( acc4 & 0xFFFFFFFCU );
  159. acc4 &= 3U;
  160. acc0 = (uint32_t) d0;
  161. d0 = (uint64_t) acc1 + ( d0 >> 32U );
  162. acc1 = (uint32_t) d0;
  163. d0 = (uint64_t) acc2 + ( d0 >> 32U );
  164. acc2 = (uint32_t) d0;
  165. d0 = (uint64_t) acc3 + ( d0 >> 32U );
  166. acc3 = (uint32_t) d0;
  167. d0 = (uint64_t) acc4 + ( d0 >> 32U );
  168. acc4 = (uint32_t) d0;
  169. offset += POLY1305_BLOCK_SIZE_BYTES;
  170. }
  171. ctx->acc[0] = acc0;
  172. ctx->acc[1] = acc1;
  173. ctx->acc[2] = acc2;
  174. ctx->acc[3] = acc3;
  175. ctx->acc[4] = acc4;
  176. }
  177. /**
  178. * \brief Compute the Poly1305 MAC
  179. *
  180. * \param ctx The Poly1305 context.
  181. * \param mac The buffer to where the MAC is written. Must be
  182. * big enough to contain the 16-byte MAC.
  183. */
  184. static void poly1305_compute_mac( const mbedtls_poly1305_context *ctx,
  185. unsigned char mac[16] )
  186. {
  187. uint64_t d;
  188. uint32_t g0, g1, g2, g3, g4;
  189. uint32_t acc0, acc1, acc2, acc3, acc4;
  190. uint32_t mask;
  191. uint32_t mask_inv;
  192. acc0 = ctx->acc[0];
  193. acc1 = ctx->acc[1];
  194. acc2 = ctx->acc[2];
  195. acc3 = ctx->acc[3];
  196. acc4 = ctx->acc[4];
  197. /* Before adding 's' we ensure that the accumulator is mod 2^130 - 5.
  198. * We do this by calculating acc - (2^130 - 5), then checking if
  199. * the 131st bit is set. If it is, then reduce: acc -= (2^130 - 5)
  200. */
  201. /* Calculate acc + -(2^130 - 5) */
  202. d = ( (uint64_t) acc0 + 5U );
  203. g0 = (uint32_t) d;
  204. d = ( (uint64_t) acc1 + ( d >> 32 ) );
  205. g1 = (uint32_t) d;
  206. d = ( (uint64_t) acc2 + ( d >> 32 ) );
  207. g2 = (uint32_t) d;
  208. d = ( (uint64_t) acc3 + ( d >> 32 ) );
  209. g3 = (uint32_t) d;
  210. g4 = acc4 + (uint32_t) ( d >> 32U );
  211. /* mask == 0xFFFFFFFF if 131st bit is set, otherwise mask == 0 */
  212. mask = (uint32_t) 0U - ( g4 >> 2U );
  213. mask_inv = ~mask;
  214. /* If 131st bit is set then acc=g, otherwise, acc is unmodified */
  215. acc0 = ( acc0 & mask_inv ) | ( g0 & mask );
  216. acc1 = ( acc1 & mask_inv ) | ( g1 & mask );
  217. acc2 = ( acc2 & mask_inv ) | ( g2 & mask );
  218. acc3 = ( acc3 & mask_inv ) | ( g3 & mask );
  219. /* Add 's' */
  220. d = (uint64_t) acc0 + ctx->s[0];
  221. acc0 = (uint32_t) d;
  222. d = (uint64_t) acc1 + ctx->s[1] + ( d >> 32U );
  223. acc1 = (uint32_t) d;
  224. d = (uint64_t) acc2 + ctx->s[2] + ( d >> 32U );
  225. acc2 = (uint32_t) d;
  226. acc3 += ctx->s[3] + (uint32_t) ( d >> 32U );
  227. /* Compute MAC (128 least significant bits of the accumulator) */
  228. mac[ 0] = (unsigned char)( acc0 );
  229. mac[ 1] = (unsigned char)( acc0 >> 8 );
  230. mac[ 2] = (unsigned char)( acc0 >> 16 );
  231. mac[ 3] = (unsigned char)( acc0 >> 24 );
  232. mac[ 4] = (unsigned char)( acc1 );
  233. mac[ 5] = (unsigned char)( acc1 >> 8 );
  234. mac[ 6] = (unsigned char)( acc1 >> 16 );
  235. mac[ 7] = (unsigned char)( acc1 >> 24 );
  236. mac[ 8] = (unsigned char)( acc2 );
  237. mac[ 9] = (unsigned char)( acc2 >> 8 );
  238. mac[10] = (unsigned char)( acc2 >> 16 );
  239. mac[11] = (unsigned char)( acc2 >> 24 );
  240. mac[12] = (unsigned char)( acc3 );
  241. mac[13] = (unsigned char)( acc3 >> 8 );
  242. mac[14] = (unsigned char)( acc3 >> 16 );
  243. mac[15] = (unsigned char)( acc3 >> 24 );
  244. }
  245. void mbedtls_poly1305_init( mbedtls_poly1305_context *ctx )
  246. {
  247. if( ctx != NULL )
  248. {
  249. mbedtls_platform_zeroize( ctx, sizeof( mbedtls_poly1305_context ) );
  250. }
  251. }
  252. void mbedtls_poly1305_free( mbedtls_poly1305_context *ctx )
  253. {
  254. if( ctx != NULL )
  255. {
  256. mbedtls_platform_zeroize( ctx, sizeof( mbedtls_poly1305_context ) );
  257. }
  258. }
  259. int mbedtls_poly1305_starts( mbedtls_poly1305_context *ctx,
  260. const unsigned char key[32] )
  261. {
  262. if( ctx == NULL || key == NULL )
  263. {
  264. return( MBEDTLS_ERR_POLY1305_BAD_INPUT_DATA );
  265. }
  266. /* r &= 0x0ffffffc0ffffffc0ffffffc0fffffff */
  267. ctx->r[0] = BYTES_TO_U32_LE( key, 0 ) & 0x0FFFFFFFU;
  268. ctx->r[1] = BYTES_TO_U32_LE( key, 4 ) & 0x0FFFFFFCU;
  269. ctx->r[2] = BYTES_TO_U32_LE( key, 8 ) & 0x0FFFFFFCU;
  270. ctx->r[3] = BYTES_TO_U32_LE( key, 12 ) & 0x0FFFFFFCU;
  271. ctx->s[0] = BYTES_TO_U32_LE( key, 16 );
  272. ctx->s[1] = BYTES_TO_U32_LE( key, 20 );
  273. ctx->s[2] = BYTES_TO_U32_LE( key, 24 );
  274. ctx->s[3] = BYTES_TO_U32_LE( key, 28 );
  275. /* Initial accumulator state */
  276. ctx->acc[0] = 0U;
  277. ctx->acc[1] = 0U;
  278. ctx->acc[2] = 0U;
  279. ctx->acc[3] = 0U;
  280. ctx->acc[4] = 0U;
  281. /* Queue initially empty */
  282. mbedtls_platform_zeroize( ctx->queue, sizeof( ctx->queue ) );
  283. ctx->queue_len = 0U;
  284. return( 0 );
  285. }
  286. int mbedtls_poly1305_update( mbedtls_poly1305_context *ctx,
  287. const unsigned char *input,
  288. size_t ilen )
  289. {
  290. size_t offset = 0U;
  291. size_t remaining = ilen;
  292. size_t queue_free_len;
  293. size_t nblocks;
  294. if( ctx == NULL )
  295. {
  296. return( MBEDTLS_ERR_POLY1305_BAD_INPUT_DATA );
  297. }
  298. else if( ( ilen > 0U ) && ( input == NULL ) )
  299. {
  300. /* input pointer is allowed to be NULL only if ilen == 0 */
  301. return( MBEDTLS_ERR_POLY1305_BAD_INPUT_DATA );
  302. }
  303. if( ( remaining > 0U ) && ( ctx->queue_len > 0U ) )
  304. {
  305. queue_free_len = ( POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len );
  306. if( ilen < queue_free_len )
  307. {
  308. /* Not enough data to complete the block.
  309. * Store this data with the other leftovers.
  310. */
  311. memcpy( &ctx->queue[ctx->queue_len],
  312. input,
  313. ilen );
  314. ctx->queue_len += ilen;
  315. remaining = 0U;
  316. }
  317. else
  318. {
  319. /* Enough data to produce a complete block */
  320. memcpy( &ctx->queue[ctx->queue_len],
  321. input,
  322. queue_free_len );
  323. ctx->queue_len = 0U;
  324. poly1305_process( ctx, 1U, ctx->queue, 1U ); /* add padding bit */
  325. offset += queue_free_len;
  326. remaining -= queue_free_len;
  327. }
  328. }
  329. if( remaining >= POLY1305_BLOCK_SIZE_BYTES )
  330. {
  331. nblocks = remaining / POLY1305_BLOCK_SIZE_BYTES;
  332. poly1305_process( ctx, nblocks, &input[offset], 1U );
  333. offset += nblocks * POLY1305_BLOCK_SIZE_BYTES;
  334. remaining %= POLY1305_BLOCK_SIZE_BYTES;
  335. }
  336. if( remaining > 0U )
  337. {
  338. /* Store partial block */
  339. ctx->queue_len = remaining;
  340. memcpy( ctx->queue, &input[offset], remaining );
  341. }
  342. return( 0 );
  343. }
  344. int mbedtls_poly1305_finish( mbedtls_poly1305_context *ctx,
  345. unsigned char mac[16] )
  346. {
  347. if( ( ctx == NULL ) || ( mac == NULL ) )
  348. {
  349. return( MBEDTLS_ERR_POLY1305_BAD_INPUT_DATA );
  350. }
  351. /* Process any leftover data */
  352. if( ctx->queue_len > 0U )
  353. {
  354. /* Add padding bit */
  355. ctx->queue[ctx->queue_len] = 1U;
  356. ctx->queue_len++;
  357. /* Pad with zeroes */
  358. memset( &ctx->queue[ctx->queue_len],
  359. 0,
  360. POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len );
  361. poly1305_process( ctx, 1U, /* Process 1 block */
  362. ctx->queue, 0U ); /* Already padded above */
  363. }
  364. poly1305_compute_mac( ctx, mac );
  365. return( 0 );
  366. }
  367. int mbedtls_poly1305_mac( const unsigned char key[32],
  368. const unsigned char *input,
  369. size_t ilen,
  370. unsigned char mac[16] )
  371. {
  372. mbedtls_poly1305_context ctx;
  373. int ret;
  374. mbedtls_poly1305_init( &ctx );
  375. ret = mbedtls_poly1305_starts( &ctx, key );
  376. if( ret != 0 )
  377. goto cleanup;
  378. ret = mbedtls_poly1305_update( &ctx, input, ilen );
  379. if( ret != 0 )
  380. goto cleanup;
  381. ret = mbedtls_poly1305_finish( &ctx, mac );
  382. cleanup:
  383. mbedtls_poly1305_free( &ctx );
  384. return( ret );
  385. }
  386. #endif /* MBEDTLS_POLY1305_ALT */
  387. #if defined(MBEDTLS_SELF_TEST)
  388. static const unsigned char test_keys[2][32] =
  389. {
  390. {
  391. 0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
  392. 0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
  393. 0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
  394. 0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b
  395. },
  396. {
  397. 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
  398. 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
  399. 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
  400. 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0
  401. }
  402. };
  403. static const unsigned char test_data[2][127] =
  404. {
  405. {
  406. 0x43, 0x72, 0x79, 0x70, 0x74, 0x6f, 0x67, 0x72,
  407. 0x61, 0x70, 0x68, 0x69, 0x63, 0x20, 0x46, 0x6f,
  408. 0x72, 0x75, 0x6d, 0x20, 0x52, 0x65, 0x73, 0x65,
  409. 0x61, 0x72, 0x63, 0x68, 0x20, 0x47, 0x72, 0x6f,
  410. 0x75, 0x70
  411. },
  412. {
  413. 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72,
  414. 0x69, 0x6c, 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61,
  415. 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
  416. 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, 0x74, 0x6f,
  417. 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
  418. 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64,
  419. 0x20, 0x67, 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20,
  420. 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x77,
  421. 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, 0x6c, 0x6c,
  422. 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
  423. 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20,
  424. 0x62, 0x6f, 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65,
  425. 0x73, 0x2c, 0x0a, 0x41, 0x6e, 0x64, 0x20, 0x74,
  426. 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, 0x65, 0x20,
  427. 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
  428. 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e
  429. }
  430. };
  431. static const size_t test_data_len[2] =
  432. {
  433. 34U,
  434. 127U
  435. };
  436. static const unsigned char test_mac[2][16] =
  437. {
  438. {
  439. 0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
  440. 0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9
  441. },
  442. {
  443. 0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
  444. 0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62
  445. }
  446. };
  447. #define ASSERT( cond, args ) \
  448. do \
  449. { \
  450. if( ! ( cond ) ) \
  451. { \
  452. if( verbose != 0 ) \
  453. mbedtls_printf args; \
  454. \
  455. return( -1 ); \
  456. } \
  457. } \
  458. while( 0 )
  459. int mbedtls_poly1305_self_test( int verbose )
  460. {
  461. unsigned char mac[16];
  462. unsigned i;
  463. int ret;
  464. for( i = 0U; i < 2U; i++ )
  465. {
  466. if( verbose != 0 )
  467. mbedtls_printf( " Poly1305 test %u ", i );
  468. ret = mbedtls_poly1305_mac( test_keys[i],
  469. test_data[i],
  470. test_data_len[i],
  471. mac );
  472. ASSERT( 0 == ret, ( "error code: %i\n", ret ) );
  473. ASSERT( 0 == memcmp( mac, test_mac[i], 16U ), ( "failed (mac)\n" ) );
  474. if( verbose != 0 )
  475. mbedtls_printf( "passed\n" );
  476. }
  477. if( verbose != 0 )
  478. mbedtls_printf( "\n" );
  479. return( 0 );
  480. }
  481. #endif /* MBEDTLS_SELF_TEST */
  482. #endif /* MBEDTLS_POLY1305_C */