| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- /******************************************************************************
- Use 'Memc' for continuous memory based dynamic array container.
- 'Memc' stores elements in continuous memory, for example:
- [ABCDE...]
- 'Memc' container reserves some extra memory for adding new elements.
- If creating a new element when there is no extra memory available,
- the container will reallocate the whole array into a new bigger one,
- thus changing the address of all elements.
- /******************************************************************************/
- T1(const_mem_addr TYPE) struct Memc : _Memc // Continuous Memory Based Container
- {
- // manage
- Memc& clear(); // remove all elements
- Memc& del (); // remove all elements and free helper memory
- // get / set
- Int elms ()C; // number of elements
- UInt elmSize ()C; // size of element
- UInt memUsage()C; // memory usage
- TYPE* data ( ) ; // get pointer to the start of the elements
- C TYPE* data ( )C; // get pointer to the start of the elements
- TYPE* addr (Int i) ; // get i-th element address, null is returned if index is out of range
- C TYPE* addr (Int i)C; // get i-th element address, null is returned if index is out of range
- TYPE* addrFirst ( ) ; // get first element address, null is returned if element doesn't exist
- C TYPE* addrFirst ( )C; // get first element address, null is returned if element doesn't exist
- TYPE* addrLast ( ) ; // get last element address, null is returned if element doesn't exist
- C TYPE* addrLast ( )C; // get last element address, null is returned if element doesn't exist
- TYPE& operator[](Int i) ; // get i-th element, accessing element out of range is an invalid operation and may cause undefined behavior
- C TYPE& operator[](Int i)C; // get i-th element, accessing element out of range is an invalid operation and may cause undefined behavior
- TYPE& operator()(Int i) ; // get i-th element, accessing element out of range will cause creation of all elements before it, memory of those elements will be first zeroed before calling their constructor
- TYPE& first ( ) ; // get first element
- C TYPE& first ( )C; // get first element
- TYPE& last ( ) ; // get last element
- C TYPE& last ( )C; // get last element
- TYPE& New ( ) ; // create new element at the end , this method may change the memory address of all elements
- TYPE& NewAt (Int i) ; // create new element at i-th position, all old elements starting from i-th position will be moved to the right, this method may change the memory address of all elements
- Int index (C TYPE *elm)C; // get index of element in container, -1 on fail , testing is done by comparing elements memory address only
- Bool contains(C TYPE *elm)C; // check if memory container actually contains element, testing is done by comparing elements memory address only
- // remove
- Memc& removeLast( ); // remove last element , this method does not change the memory address of any of the remaining elements
- Memc& remove ( Int i , Bool keep_order=false); // remove i-th element , if 'keep_order'=false then moves the last element to i-th, if 'keep_order'=true then moves all elements after i-th to the left (keeping order), this method may change the memory address of some elements
- Memc& removeNum ( Int i , Int n, Bool keep_order=false); // remove 'n' elements starting from i-th , if 'keep_order'=false then moves the last elements to i-th, if 'keep_order'=true then moves all elements after i-th to the left (keeping order), this method may change the memory address of some elements
- Memc& removeData(C TYPE *elm, Bool keep_order=false); // remove element by giving its memory address, if 'keep_order'=false then moves the last element to i-th, if 'keep_order'=true then moves all elements after i-th to the left (keeping order), this method may change the memory address of some elements
- TYPE popFirst( Bool keep_order=true); // get first element and remove it from the container, if 'keep_order'=true then moves all elements after i-th to the left (keeping order)
- TYPE pop (Int i, Bool keep_order=true); // get i-th element and remove it from the container, if 'keep_order'=true then moves all elements after i-th to the left (keeping order)
- TYPE pop ( ); // get last element and remove it from the container
- Memc& setNum (Int num); // set number of elements to 'num' , this method may change the memory address of all elements
- Memc& setNumZero(Int num); // set number of elements to 'num', memory of new elements will be first zeroed before calling their constructor, this method may change the memory address of all elements
- Int addNum (Int num); // add 'num' elements, return index of first added element , this method may change the memory address of all elements
- // values
- T1(VALUE) Int find (C VALUE &value )C {REPA(T)if(T[i]==value)return i; return -1; } // check if 'value' is present in container and return its index, -1 if not found
- T1(VALUE) Bool has (C VALUE &value )C {return find(value)>=0; } // check if 'value' is present in container
- T1(VALUE) Memc& add (C VALUE &value ) {New()=value; return T; } // add 'value' to container , this method may change the memory address of all elements
- T1(VALUE) Bool include(C VALUE &value ) {if(!has(value)){add(value); return true;} return false; } // include 'value' if it's not already present in container, returns true if value wasn't present and has been added , this method may change the memory address of all elements
- T1(VALUE) Bool exclude(C VALUE &value, Bool keep_order=false) {Int i=find(value); if(i>=0){remove(i, keep_order); return true ;} return false;} // exclude 'value' if present in container , returns true if value was present and has been removed, this method may change the memory address of all elements
- T1(VALUE) Bool toggle (C VALUE &value, Bool keep_order=false) {Int i=find(value); if(i>=0){remove(i, keep_order); return false;} add(value); return true ;} // toggle 'value' presence in container , returns true if value is now present in container , this method may change the memory address of all elements
- T1(VALUE) Bool binarySearch (C VALUE &value, Int &index, Int compare(C TYPE &a, C VALUE &b)=Compare)C; // search sorted container for presence of 'value' and return if it was found in the container, 'index'=if the function returned true then this index points to the location where the 'value' is located in the container, if the function returned false then it means that 'value' was not found in the container however the 'index' points to the place where it should be added in the container while preserving sorted data, 'index' will always be in range (0..elms) inclusive
- T1(VALUE) Bool binaryHas (C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare)C {Int i; return binarySearch(value, i, compare); } // check if 'value' (using binary search) is present in container
- T1(VALUE) TYPE* binaryFind (C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare) {Int i; return binarySearch(value, i, compare) ? &T[i] : null; } // check if 'value' (using binary search) is present in container and return it, null on fail
- T1(VALUE) C TYPE* binaryFind (C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare)C {return ConstCast(T).binaryFind(value, compare); } // check if 'value' (using binary search) is present in container and return it, null on fail
- T1(VALUE) Memc& binaryAdd (C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare) {Int i; binarySearch(value, i, compare); NewAt (i)=value; return T;} // add 'value' (using binary search) , this method may change the memory address of all elements
- T1(VALUE) Bool binaryInclude(C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare) {Int i; if( !binarySearch(value, i, compare)){NewAt (i)=value; return true;} return false;} // include 'value' (using binary search) if it's not already present in container, returns true if value wasn't present and has been added , this method may change the memory address of all elements
- T1(VALUE) Bool binaryExclude(C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare) {Int i; if( binarySearch(value, i, compare)){remove(i, true); return true;} return false;} // exclude 'value' (using binary search) if present in container , returns true if value was present and has been removed, this method may change the memory address of all elements
- T1(VALUE) Bool binaryToggle (C VALUE &value, Int compare(C TYPE &a, C VALUE &b)=Compare) {Int i; if( !binarySearch(value, i, compare)){NewAt (i)=value; return true;} remove(i, true); return false;} // toggle 'value' (using binary search) presence in container , returns true if value is now present in container , this method may change the memory address of all elements
- // order
- Memc& sort(Int compare(C TYPE &a, C TYPE &b)); // sort elements with custom comparing function, this method may change the memory address of all elements
- Memc& reverseOrder( ); // reverse order of elements, this method changes the memory address of all elements
- Memc& randomizeOrder( ); // randomize order of elements, this method may change the memory address of all elements
- Memc& rotateOrder(Int offset ); // rotate order of elements, changes the order of elements so "new_index=old_index+offset", 'offset'=offset of moving the original indexes into target indexes (-Inf..Inf)
- Memc& swapOrder(Int i , Int j ); // swap order of 'i' and 'j' elements
- Memc& moveElm (Int elm, Int new_index ); // move 'elm' element to new position located at 'new_index'
- // misc
- Memc& operator=(C Mems <TYPE > &src); // copy elements using assignment operator
- Memc& operator=(C Memc <TYPE > &src); // copy elements using assignment operator
- template<Int size> Memc& operator=(C Memt <TYPE, size> &src); // copy elements using assignment operator
- Memc& operator=(C Memb <TYPE > &src); // copy elements using assignment operator
- Memc& operator=(C Memx <TYPE > &src); // copy elements using assignment operator
- Memc& operator=(C Meml <TYPE > &src); // copy elements using assignment operator
- template<Int size> Memc& operator=(C MemPtr<TYPE, size> &src); // copy elements using assignment operator
- Memc& operator=( Memc <TYPE > &&src); // copy elements using assignment operator
- T1(EXTENDED) Memc& replaceClass(); // replace the type of class stored in the container, all elements are automatically removed before changing the type of the class, the new type must be extended from the base 'TYPE' (if you're receiving a compilation error pointing to this method this means that the new class isn't extended from the base class)
- T1(BASE) operator Memc<BASE>&() ; // casting to container of 'BASE' elements, 'TYPE' must be extended from BASE
- T1(BASE) operator C Memc<BASE>&()C; // casting to container of 'BASE' elements, 'TYPE' must be extended from BASE
- #if EE_PRIVATE
- void copyTo ( TYPE *dest)C {_Memc::copyTo (dest); } // copy raw memory of all elements to 'dest'
- Memc& copyFrom(C TYPE *src ) {_Memc::copyFrom(src ); return T;} // copy raw memory of all elements from 'src '
- #endif
- // io
- Bool save(File &f); Bool save(File &f)C; // save elements with their own 'save' method, this method first saves number of current elements, and then for each element calls its 'save' method, false on fail
- Bool load(File &f); // load elements with their own 'load' method, this method first loads number of saved elements, and then for each element calls its 'load' method, false on fail
- T1(USER) Bool save(File &f, C USER &user)C; // save elements with their own 'save' method and 'user' parameter, this method first saves number of current elements, and then for each element calls its 'save' method, false on fail
- T1(USER) Bool load(File &f, C USER &user) ; // load elements with their own 'load' method and 'user' parameter, this method first loads number of saved elements, and then for each element calls its 'load' method, false on fail
- T2(USER, USER1) Bool save(File &f, C USER &user, C USER1 &user1)C; // save elements with their own 'save' method and 'user, user1' parameter, this method first saves number of current elements, and then for each element calls its 'save' method, false on fail
- T2(USER, USER1) Bool load(File &f, C USER &user, C USER1 &user1) ; // load elements with their own 'load' method and 'user, user1' parameter, this method first loads number of saved elements, and then for each element calls its 'load' method, false on fail
- Bool saveRaw(File &f)C; // save raw memory of elements (number of elements + elements raw memory), false on fail
- Bool loadRaw(File &f) ; // load raw memory of elements (number of elements + elements raw memory), false on fail
- #if EE_PRIVATE
- Bool _saveRaw(File &f)C; // save raw memory of elements (number of elements + elements raw memory), false on fail, deprecated - do not use
- Bool _loadRaw(File &f) ; // load raw memory of elements (number of elements + elements raw memory), false on fail, deprecated - do not use
- Bool _save (File &f)C; // save elements with their own 'save' method, this method first saves number of current elements, and then for each element calls its 'save' method, false on fail, deprecated - do not use
- Bool _load (File &f) ; // load elements with their own 'load' method, this method first loads number of saved elements, and then for each element calls its 'load' method, false on fail, deprecated - do not use
- #endif
- Memc( );
- Memc(C Memc &src);
- Memc( Memc &&src);
- };
- /******************************************************************************/
- T1(TYPE) struct MemcAbstract : _Memc // Continuous Memory Based Container which allows storage of abstract classes, 'replaceClass' should be called before creating new elements in it
- {
- // manage
- MemcAbstract& clear(); // remove all elements
- MemcAbstract& del (); // remove all elements and free helper memory
- // get / set
- Int elms ()C; // number of elements
- UInt elmSize ()C; // size of element
- UInt memUsage()C; // memory usage
- TYPE* data ( ) ; // get pointer to the start of the elements
- C TYPE* data ( )C; // get pointer to the start of the elements
- TYPE* addr (Int i) ; // get i-th element address, null is returned if index is out of range
- C TYPE* addr (Int i)C; // get i-th element address, null is returned if index is out of range
- TYPE& operator[](Int i) ; // get i-th element, accessing element out of range is an invalid operation and may cause undefined behavior
- C TYPE& operator[](Int i)C; // get i-th element, accessing element out of range is an invalid operation and may cause undefined behavior
- TYPE& operator()(Int i) ; // get i-th element, accessing element out of range will cause creation of all elements before it, memory of those elements will be first zeroed before calling their constructor
- TYPE& first ( ) ; // get first element
- C TYPE& first ( )C; // get first element
- TYPE& last ( ) ; // get last element
- C TYPE& last ( )C; // get last element
- TYPE& New ( ) ; // create new element at the end , this method does not change the memory address of any of the elements
- TYPE& NewAt (Int i) ; // create new element at i-th position, all old elements starting from i-th position will be moved to the right, this method may change the memory address of all elements
- Int index (C TYPE *elm)C; // get index of element in container, -1 on fail , testing is done by comparing elements memory address only
- Bool contains(C TYPE *elm)C; // check if memory container actually contains element, testing is done by comparing elements memory address only
- // remove
- MemcAbstract& removeLast( ); // remove last element , this method does not change the memory address of any of the remaining elements
- MemcAbstract& remove ( Int i , Bool keep_order=false); // remove i-th element , if 'keep_order'=false then moves the last element to i-th, if 'keep_order'=true then moves all elements after i-th to the left (keeping order), this method may change the memory address of some elements
- MemcAbstract& removeData(C TYPE *elm, Bool keep_order=false); // remove element by giving its memory address, if 'keep_order'=false then moves the last element to i-th, if 'keep_order'=true then moves all elements after i-th to the left (keeping order), this method may change the memory address of some elements
- MemcAbstract& setNum (Int num); // set number of elements to 'num' , this method does not change the memory address of any of the elements
- MemcAbstract& setNumZero(Int num); // set number of elements to 'num', memory of new elements will be first zeroed before calling their constructor, this method does not change the memory address of any of the elements
- Int addNum (Int num); // add 'num' elements, return index of first added element , this method does not change the memory address of any of the elements
- T1(EXTENDED) MemcAbstract& replaceClass(); // replace the type of class stored in the container, all elements are automatically removed before changing the type of the class, the new type must be extended from the base 'TYPE' (if you're receiving a compilation error pointing to this method this means that the new class isn't extended from the base class)
- T1(BASE) operator Memc<BASE>&() ; // casting to container of 'BASE' elements, 'TYPE' must be extended from BASE
- T1(BASE) operator C Memc<BASE>&()C; // casting to container of 'BASE' elements, 'TYPE' must be extended from BASE
- MemcAbstract();
- };
- /******************************************************************************/
- inline Int Elms(C _Memc &memc) {return memc.elms();}
- /******************************************************************************/
- #if EE_PRIVATE
- T2(A, B) struct std__pair
- {
- A first;
- B second;
- std__pair() {}
- std__pair(C A &a, C B &b) : first(a), second(b) {}
- };
- T1(TYPE) STRUCT_PRIVATE(std__unique_ptr , Mems<TYPE>)
- //{
- TYPE& operator[](Int i) {return super::operator[](i);}
- C TYPE& operator[](Int i)C {return super::operator[](i);}
- Bool operator()( )C {return super::elms()!=0;}
- Bool operator! ( )C {return super::elms()==0;}
- Bool operator==(C TYPE *data)C {return super::data()==data;}
- Bool operator!=(C TYPE *data)C {return super::data()!=data;}
- void reset (Int elms) { super::setNum(elms);}
- TYPE* get ( ) {return super::data();}
- std__unique_ptr( ) {}
- std__unique_ptr(Int elms) {reset(elms);}
- };
- T1(TYPE) STRUCT_PRIVATE(std__vector , Memc<TYPE>)
- //{
- TYPE& operator[](Int i) {return super::operator[](i);}
- C TYPE& operator[](Int i)C {return super::operator[](i);}
- Bool empty()C {return !super::elms();}
- Int size ()C {return super::elms();}
- TYPE* begin() {return super::data();}
- TYPE* end () {return super::data()+super::elms();}
- C TYPE* cbegin()C {return super::data();}
- C TYPE* cend ()C {return super::data()+super::elms();}
- void clear( ) {super::clear();}
- void emplace_back(C TYPE &t) {super::add(t);}
- void push_back(C TYPE &t) {super::add(t);}
- void pop_back( ) {super::removeLast();}
- TYPE& back( ) {return super::last();}
- void resize (Int elms ) {super::setNumZero(elms);} // yes, zero is required !!
- void reserve(Int elms ) {super::reserve(elms);}
- std__vector() {}
- std__vector(Int elms ) {resize(elms);}
- std__vector(Int elms, C TYPE &def_val) {resize(elms); REPAO(T)=def_val;}
- };
- T1(TYPE) inline Int Elms(C std__vector<TYPE> &vector) {return vector.size();}
- #endif
- /******************************************************************************/
|