|
|
@@ -0,0 +1,518 @@
|
|
|
+#include "Heightmap.h"
|
|
|
+#include "GPBFile.h"
|
|
|
+#include "Thread.h"
|
|
|
+
|
|
|
+namespace gameplay
|
|
|
+{
|
|
|
+
|
|
|
+// Number of threads to spawn for the heightmap generator
|
|
|
+#define THREAD_COUNT 8
|
|
|
+
|
|
|
+// Thread data structure
|
|
|
+struct HeightmapThreadData
|
|
|
+{
|
|
|
+ float rayHeight; // [in]
|
|
|
+ const Vector3* rayDirection; // [in]
|
|
|
+ const std::vector<Mesh*>* meshes; // [in]
|
|
|
+ const BoundingVolume* bounds; // [in]
|
|
|
+ int minX; // [in]
|
|
|
+ int maxX; // [in]
|
|
|
+ int minZ; // [in]
|
|
|
+ int maxZ; // [in]
|
|
|
+ float minHeight; // [out]
|
|
|
+ float maxHeight; // [out]
|
|
|
+ float* heights; // [in][out]
|
|
|
+ int heightIndex; // [in]
|
|
|
+};
|
|
|
+
|
|
|
+// Globals used by thread
|
|
|
+int __processedHeightmapScanLines = 0;
|
|
|
+int __totalHeightmapScanlines = 0;
|
|
|
+int __failedRayCasts = 0;
|
|
|
+
|
|
|
+// Forward declarations
|
|
|
+int generateHeightmapChunk(void* threadData);
|
|
|
+bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const Vector3& boxMin, const Vector3& boxMax, float* distance = NULL);
|
|
|
+int intersect_triangle(const float orig[3], const float dir[3], const float vert0[3], const float vert1[3], const float vert2[3], float *t, float *u, float *v);
|
|
|
+bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const std::vector<Vertex>& vertices, const std::vector<MeshPart*>& parts, Vector3* point);
|
|
|
+
|
|
|
+void Heightmap::generate(const std::vector<std::string>& nodeIds, const char* filename)
|
|
|
+{
|
|
|
+ printf("Generating heightmap: %s...\n", filename);
|
|
|
+
|
|
|
+ GPBFile* gpbFile = GPBFile::getInstance();
|
|
|
+
|
|
|
+ // Lookup nodes in GPB file and compute a single bounding volume that encapsulates all meshes
|
|
|
+ // to be included in the heightmap generation.
|
|
|
+ BoundingVolume bounds;
|
|
|
+ bounds.min.set(FLT_MAX, FLT_MAX, FLT_MAX);
|
|
|
+ bounds.max.set(-FLT_MAX, -FLT_MAX, -FLT_MAX);
|
|
|
+ std::vector<Mesh*> meshes;
|
|
|
+ for (unsigned int j = 0, ncount = nodeIds.size(); j < ncount; ++j)
|
|
|
+ {
|
|
|
+ Node* node = gpbFile->getNode(nodeIds[j].c_str());
|
|
|
+ if (node)
|
|
|
+ {
|
|
|
+ Mesh* mesh = node->getModel() ? node->getModel()->getMesh() : NULL;
|
|
|
+ if (mesh)
|
|
|
+ {
|
|
|
+ // Add this mesh and update our bounding volume
|
|
|
+ if (meshes.size() == 0)
|
|
|
+ bounds = mesh->bounds;
|
|
|
+ else
|
|
|
+ bounds.merge(mesh->bounds);
|
|
|
+
|
|
|
+ meshes.push_back(mesh);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fprintf(stderr, "WARNING: Node passed to heightmap argument does not have a mesh: %s\n", nodeIds[j].c_str());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fprintf(stderr, "WARNING: Failed to locate node for heightmap argument: %s\n", nodeIds[j].c_str());
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (meshes.size() == 0)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "WARNING: Skipping generation of heightmap '%s'. No nodes found.\n", filename);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Shoot rays down from a point just above the max Y position of the mesh.
|
|
|
+ // Compute ray-triangle intersection tests against the ray and this mesh to
|
|
|
+ // generate heightmap data.
|
|
|
+ Vector3 rayOrigin(0, bounds.max.y + 10, 0);
|
|
|
+ Vector3 rayDirection(0, -1, 0);
|
|
|
+
|
|
|
+ int minX = (int)ceil(bounds.min.x);
|
|
|
+ int maxX = (int)floor(bounds.max.x);
|
|
|
+ int minZ = (int)ceil(bounds.min.z);
|
|
|
+ int maxZ = (int)floor(bounds.max.z);
|
|
|
+ int width = maxX - minX + 1;
|
|
|
+ int height = maxZ - minZ + 1;
|
|
|
+ int size = width * height;
|
|
|
+ float* heights = new float[size];
|
|
|
+ float minHeight = FLT_MAX;
|
|
|
+ float maxHeight = -FLT_MAX;
|
|
|
+
|
|
|
+ __totalHeightmapScanlines = height;
|
|
|
+
|
|
|
+ // Split the work into separate threads to make max use of available cpu cores and speed up computation.
|
|
|
+ HeightmapThreadData threadData[THREAD_COUNT];
|
|
|
+ THREAD_HANDLE threads[THREAD_COUNT];
|
|
|
+ int stepSize = height / THREAD_COUNT;
|
|
|
+ for (int i = 0; i < THREAD_COUNT; ++i)
|
|
|
+ {
|
|
|
+ HeightmapThreadData& data = threadData[i];
|
|
|
+ data.rayHeight = rayOrigin.y;
|
|
|
+ data.rayDirection = &rayDirection;
|
|
|
+ data.bounds = &bounds;
|
|
|
+ data.meshes = &meshes;
|
|
|
+ data.minX = minX;
|
|
|
+ data.maxX = maxX;
|
|
|
+ data.minZ = minZ + (stepSize * i);
|
|
|
+ data.maxZ = data.minZ + stepSize - 1;
|
|
|
+ if (i == THREAD_COUNT - 1)
|
|
|
+ data.maxZ = maxZ;
|
|
|
+ data.heights = heights;
|
|
|
+ data.heightIndex = width * (stepSize * i);
|
|
|
+
|
|
|
+ // Start the processing thread
|
|
|
+ if (!createThread(&threads[i], &generateHeightmapChunk, &data))
|
|
|
+ {
|
|
|
+ fprintf(stderr, "ERROR: Failed to spawn worker thread for generation of heightmap: %s\n", filename);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Wait for all threads to terminate
|
|
|
+ waitForThreads(THREAD_COUNT, threads);
|
|
|
+
|
|
|
+ // Close all thread handles and free memory allocations.
|
|
|
+ for (int i = 0; i < THREAD_COUNT; ++i)
|
|
|
+ closeThread(threads[i]);
|
|
|
+
|
|
|
+ // Update min/max height from all completed threads
|
|
|
+ for (int i = 0; i < THREAD_COUNT; ++i)
|
|
|
+ {
|
|
|
+ if (threadData[i].minHeight < minHeight)
|
|
|
+ minHeight = threadData[i].minHeight;
|
|
|
+ if (threadData[i].maxHeight > maxHeight)
|
|
|
+ maxHeight = threadData[i].maxHeight;
|
|
|
+ }
|
|
|
+
|
|
|
+ printf("\r\tDone.\n");
|
|
|
+
|
|
|
+ if (__failedRayCasts)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "Warning: %d triangle intersections failed for heightmap: %s\n", __failedRayCasts, filename);
|
|
|
+
|
|
|
+ // Go through and clamp any height values that are set to -FLT_MAX to the min recorded height value
|
|
|
+ // (otherwise the range of height values will be far too large).
|
|
|
+ for (int i = 0; i < size; ++i)
|
|
|
+ {
|
|
|
+ if (heights[i] == -FLT_MAX)
|
|
|
+ heights[i] = minHeight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Normalize the max height value
|
|
|
+ maxHeight = maxHeight - minHeight;
|
|
|
+
|
|
|
+ png_structp png_ptr = NULL;
|
|
|
+ png_infop info_ptr = NULL;
|
|
|
+ png_bytep row = NULL;
|
|
|
+
|
|
|
+ FILE* fp = fopen(filename, "wb");
|
|
|
+ if (fp == NULL)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "Error: Failed to open file for writing: %s\n", filename);
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
|
|
|
+ if (png_ptr == NULL)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "Error: Write struct creation failed: %s\n", filename);
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ info_ptr = png_create_info_struct(png_ptr);
|
|
|
+ if (info_ptr == NULL)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "Error: Info struct creation failed: %s\n", filename);
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ png_init_io(png_ptr, fp);
|
|
|
+
|
|
|
+ png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
|
|
|
+
|
|
|
+ png_write_info(png_ptr, info_ptr);
|
|
|
+
|
|
|
+ // Allocate memory for a single row of image data
|
|
|
+ row = (png_bytep)malloc(3 * width * sizeof(png_byte));
|
|
|
+
|
|
|
+ for (int y = 0; y < height; y++)
|
|
|
+ {
|
|
|
+ for (int x = 0; x < width; x++)
|
|
|
+ {
|
|
|
+ // Write height value normalized between 0-255 (between min and max height)
|
|
|
+ float h = heights[y*width + x];
|
|
|
+ float nh = (h - minHeight) / maxHeight;
|
|
|
+ int bits = (int)(nh * 16777215.0f); // 2^24-1
|
|
|
+
|
|
|
+ int pos = x*3;
|
|
|
+ row[pos+2] = (png_byte)(bits & 0xff);
|
|
|
+ bits >>= 8;
|
|
|
+ row[pos+1] = (png_byte)(bits & 0xff);
|
|
|
+ bits >>= 8;
|
|
|
+ row[pos] = (png_byte)(bits & 0xff);
|
|
|
+ }
|
|
|
+ png_write_row(png_ptr, row);
|
|
|
+ }
|
|
|
+
|
|
|
+ png_write_end(png_ptr, NULL);
|
|
|
+ printf("Saved heightmap: %s\n", filename);
|
|
|
+
|
|
|
+error:
|
|
|
+ if (heights)
|
|
|
+ delete[] heights;
|
|
|
+ if (fp)
|
|
|
+ fclose(fp);
|
|
|
+ if (row)
|
|
|
+ free(row);
|
|
|
+ if (info_ptr)
|
|
|
+ png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
|
|
|
+ if (png_ptr)
|
|
|
+ png_destroy_write_struct(&png_ptr, (png_infopp)NULL);
|
|
|
+}
|
|
|
+
|
|
|
+int generateHeightmapChunk(void* threadData)
|
|
|
+{
|
|
|
+ HeightmapThreadData* data = (HeightmapThreadData*)threadData;
|
|
|
+
|
|
|
+ Vector3 rayOrigin(0, data->rayHeight, 0);
|
|
|
+ const Vector3& rayDirection = *data->rayDirection;
|
|
|
+ int minX = data->minX;
|
|
|
+ int maxX = data->maxX;
|
|
|
+ int minZ = data->minZ;
|
|
|
+ int maxZ = data->maxZ;
|
|
|
+ const std::vector<Mesh*>& meshes = *data->meshes;
|
|
|
+ float* heights = data->heights;
|
|
|
+
|
|
|
+ Vector3 intersectionPoint;
|
|
|
+ float minHeight = FLT_MAX;
|
|
|
+ float maxHeight = -FLT_MAX;
|
|
|
+ int index = data->heightIndex;
|
|
|
+
|
|
|
+ for (int z = minZ; z <= maxZ; ++z)
|
|
|
+ {
|
|
|
+ printf("\r\t%d%%", (int)(((float)__processedHeightmapScanLines / __totalHeightmapScanlines) * 100.0f));
|
|
|
+
|
|
|
+ rayOrigin.z = (float)z;
|
|
|
+ for (int x = minX; x <= maxX; ++x)
|
|
|
+ {
|
|
|
+ float h = -FLT_MAX;
|
|
|
+ rayOrigin.x = (float)x;
|
|
|
+
|
|
|
+ for (unsigned int i = 0, count = meshes.size(); i < count; ++i)
|
|
|
+ {
|
|
|
+ // Pick the highest intersecting Y value of all meshes
|
|
|
+ Mesh* mesh = meshes[i];
|
|
|
+
|
|
|
+ // Perform a quick ray/bounding box test to quick-out
|
|
|
+ if (!intersect(rayOrigin, rayDirection, mesh->bounds.min, mesh->bounds.max))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Computer intersection point of ray with mesh
|
|
|
+ if (intersect(rayOrigin, rayDirection, mesh->vertices, mesh->parts, &intersectionPoint))
|
|
|
+ {
|
|
|
+ if (intersectionPoint.y > h)
|
|
|
+ {
|
|
|
+ h = intersectionPoint.y;
|
|
|
+
|
|
|
+ // Update min/max height values
|
|
|
+ if (h < minHeight)
|
|
|
+ minHeight = h;
|
|
|
+ if (h > maxHeight)
|
|
|
+ maxHeight = h;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update the glboal height array
|
|
|
+ heights[index++] = h;
|
|
|
+
|
|
|
+ if (h == -FLT_MAX)
|
|
|
+ ++__failedRayCasts;
|
|
|
+ }
|
|
|
+
|
|
|
+ ++__processedHeightmapScanLines;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update min/max height for this thread data
|
|
|
+ data->minHeight = minHeight;
|
|
|
+ data->maxHeight = maxHeight;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////
|
|
|
+//
|
|
|
+// Fast, Minimum Storage Ray-Triangle Intersection
|
|
|
+//
|
|
|
+// Authors: Tomas Möller, Ben Trumbore
|
|
|
+// http://jgt.akpeters.com/papers/MollerTrumbore97
|
|
|
+//
|
|
|
+// Implementation of algorithm from Real-Time Rendering (vol 1), pg. 305.
|
|
|
+//
|
|
|
+// Adapted slightly for use here.
|
|
|
+//
|
|
|
+#ifndef EPSILON
|
|
|
+#define EPSILON 0.000001
|
|
|
+#endif
|
|
|
+#define CROSS(dest,v1,v2) \
|
|
|
+ dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
|
|
|
+ dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
|
|
|
+ dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
|
|
|
+#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
|
|
|
+#define SUB(dest,v1,v2) \
|
|
|
+ dest[0]=v1[0]-v2[0]; \
|
|
|
+ dest[1]=v1[1]-v2[1]; \
|
|
|
+ dest[2]=v1[2]-v2[2];
|
|
|
+int intersect_triangle(const float orig[3], const float dir[3], const float vert0[3], const float vert1[3], const float vert2[3], float *t, float *u, float *v)
|
|
|
+{
|
|
|
+ float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
|
|
|
+ float det,inv_det;
|
|
|
+
|
|
|
+ /* find vectors for two edges sharing vert0 */
|
|
|
+ SUB(edge1, vert1, vert0);
|
|
|
+ SUB(edge2, vert2, vert0);
|
|
|
+
|
|
|
+ /* begin calculating determinant - also used to calculate U parameter */
|
|
|
+ CROSS(pvec, dir, edge2);
|
|
|
+
|
|
|
+ /* if determinant is near zero, ray lies in plane of triangle */
|
|
|
+ det = DOT(edge1, pvec);
|
|
|
+
|
|
|
+ if (det > -EPSILON && det < EPSILON)
|
|
|
+ return 0;
|
|
|
+ inv_det = 1.0f / det;
|
|
|
+
|
|
|
+ /* calculate distance from vert0 to ray origin */
|
|
|
+ SUB(tvec, orig, vert0);
|
|
|
+
|
|
|
+ /* calculate U parameter and test bounds */
|
|
|
+ *u = DOT(tvec, pvec) * inv_det;
|
|
|
+ if (*u < 0.0 || *u > 1.0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* prepare to test V parameter */
|
|
|
+ CROSS(qvec, tvec, edge1);
|
|
|
+
|
|
|
+ /* calculate V parameter and test bounds */
|
|
|
+ *v = DOT(dir, qvec) * inv_det;
|
|
|
+ if (*v < 0.0 || *u + *v > 1.0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* calculate t, ray intersects triangle */
|
|
|
+ *t = DOT(edge2, qvec) * inv_det;
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+// Performs an intersection test between a ray and the given mesh part and stores the result in "point".
|
|
|
+bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const std::vector<Vertex>& vertices, const std::vector<MeshPart*>& parts, Vector3* point)
|
|
|
+{
|
|
|
+ const float* orig = &rayOrigin.x;
|
|
|
+ const float* dir = &rayDirection.x;
|
|
|
+
|
|
|
+ float minT = FLT_MAX;
|
|
|
+
|
|
|
+ for (unsigned int i = 0, partCount = parts.size(); i < partCount; ++i)
|
|
|
+ {
|
|
|
+ MeshPart* part = parts[i];
|
|
|
+
|
|
|
+ for (unsigned int j = 0, indexCount = part->getIndicesCount(); j < indexCount; j += 3)
|
|
|
+ {
|
|
|
+ const float* v0 = &vertices[part->getIndex( j )].position.x;
|
|
|
+ const float* v1 = &vertices[part->getIndex(j+1)].position.x;
|
|
|
+ const float* v2 = &vertices[part->getIndex(j+2)].position.x;
|
|
|
+
|
|
|
+ // Perform a quick check (in 2D) to determine if the point is definitely NOT in the triangle
|
|
|
+ float xmin, xmax, zmin, zmax;
|
|
|
+ xmin = v0[0] < v1[0] ? v0[0] : v1[0]; xmin = xmin < v2[0] ? xmin : v2[0];
|
|
|
+ xmax = v0[0] > v1[0] ? v0[0] : v1[0]; xmax = xmax > v2[0] ? xmax : v2[0];
|
|
|
+ zmin = v0[2] < v1[2] ? v0[2] : v1[2]; zmin = zmin < v2[2] ? zmin : v2[2];
|
|
|
+ zmax = v0[2] > v1[2] ? v0[2] : v1[2]; zmax = zmax > v2[2] ? zmax : v2[2];
|
|
|
+ if (orig[0] < xmin || orig[0] > xmax || orig[2] < zmin || orig[2] > zmax)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Perform a full ray/traingle intersection test in 3D to get the intersection point
|
|
|
+ float t, u, v;
|
|
|
+ if (intersect_triangle(orig, dir, v0, v1, v2, &t, &u, &v))
|
|
|
+ {
|
|
|
+ // Found an intersection!
|
|
|
+ if (t < minT)
|
|
|
+ {
|
|
|
+ minT = t;
|
|
|
+
|
|
|
+ if (point)
|
|
|
+ {
|
|
|
+ Vector3 rd(rayDirection);
|
|
|
+ rd.scale(t);
|
|
|
+ Vector3::add(rayOrigin, rd, point);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return (minT != FLT_MAX);//false;
|
|
|
+}
|
|
|
+
|
|
|
+// Ray/Box intersection test.
|
|
|
+bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const Vector3& boxMin, const Vector3& boxMax, float* distance)
|
|
|
+{
|
|
|
+ const Vector3& origin = rayOrigin;
|
|
|
+ const Vector3& direction = rayDirection;
|
|
|
+ const Vector3& min = boxMin;
|
|
|
+ const Vector3& max = boxMax;
|
|
|
+
|
|
|
+ // Intermediate calculation variables.
|
|
|
+ float dnear = 0.0f;
|
|
|
+ float dfar = 0.0f;
|
|
|
+ float tmin = 0.0f;
|
|
|
+ float tmax = 0.0f;
|
|
|
+
|
|
|
+ // X direction.
|
|
|
+ float div = 1.0f / direction.x;
|
|
|
+ if (div >= 0.0f)
|
|
|
+ {
|
|
|
+ tmin = (min.x - origin.x) * div;
|
|
|
+ tmax = (max.x - origin.x) * div;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ tmin = (max.x - origin.x) * div;
|
|
|
+ tmax = (min.x - origin.x) * div;
|
|
|
+ }
|
|
|
+ dnear = tmin;
|
|
|
+ dfar = tmax;
|
|
|
+
|
|
|
+ // Check if the ray misses the box.
|
|
|
+ if (dnear > dfar || dfar < 0.0f)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Y direction.
|
|
|
+ div = 1.0f / direction.y;
|
|
|
+ if (div >= 0.0f)
|
|
|
+ {
|
|
|
+ tmin = (min.y - origin.y) * div;
|
|
|
+ tmax = (max.y - origin.y) * div;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ tmin = (max.y - origin.y) * div;
|
|
|
+ tmax = (min.y - origin.y) * div;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update the near and far intersection distances.
|
|
|
+ if (tmin > dnear)
|
|
|
+ {
|
|
|
+ dnear = tmin;
|
|
|
+ }
|
|
|
+ if (tmax < dfar)
|
|
|
+ {
|
|
|
+ dfar = tmax;
|
|
|
+ }
|
|
|
+ // Check if the ray misses the box.
|
|
|
+ if (dnear > dfar || dfar < 0.0f)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Z direction.
|
|
|
+ div = 1.0f / direction.z;
|
|
|
+ if (div >= 0.0f)
|
|
|
+ {
|
|
|
+ tmin = (min.z - origin.z) * div;
|
|
|
+ tmax = (max.z - origin.z) * div;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ tmin = (max.z - origin.z) * div;
|
|
|
+ tmax = (min.z - origin.z) * div;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update the near and far intersection distances.
|
|
|
+ if (tmin > dnear)
|
|
|
+ {
|
|
|
+ dnear = tmin;
|
|
|
+ }
|
|
|
+ if (tmax < dfar)
|
|
|
+ {
|
|
|
+ dfar = tmax;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if the ray misses the box.
|
|
|
+ if (dnear > dfar || dfar < 0.0f)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // The ray intersects the box
|
|
|
+ if (distance)
|
|
|
+ *distance = dnear;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+}
|