|
|
@@ -1,1346 +1,1346 @@
|
|
|
-// Purposely not including Base.h here, or any other gameplay dependencies
|
|
|
-// so this class can be reused between gameplay and gameplay-encoder.
|
|
|
-#include "Curve.h"
|
|
|
-#include "Quaternion.h"
|
|
|
-#include <cassert>
|
|
|
-#include <cmath>
|
|
|
-#include <memory>
|
|
|
-
|
|
|
-using std::memcpy;
|
|
|
-using std::fabs;
|
|
|
-using std::sqrt;
|
|
|
-using std::cos;
|
|
|
-using std::sin;
|
|
|
-using std::exp;
|
|
|
-using std::strcmp;
|
|
|
-
|
|
|
-#ifndef NULL
|
|
|
-#define NULL 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef MATH_PI
|
|
|
-#define MATH_PI 3.14159265358979323846f
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef MATH_PIOVER2
|
|
|
-#define MATH_PIOVER2 1.57079632679489661923f
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef MATH_PIX2
|
|
|
-#define MATH_PIX2 6.28318530717958647693f
|
|
|
-#endif
|
|
|
-
|
|
|
-// Object deletion macro
|
|
|
-#ifndef SAFE_DELETE
|
|
|
-#define SAFE_DELETE(x) \
|
|
|
- if (x) \
|
|
|
- { \
|
|
|
- delete x; \
|
|
|
- x = NULL; \
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
-// Array deletion macro
|
|
|
-#ifndef SAFE_DELETE_ARRAY
|
|
|
-#define SAFE_DELETE_ARRAY(x) \
|
|
|
- if (x) \
|
|
|
- { \
|
|
|
- delete[] x; \
|
|
|
- x = NULL; \
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
-namespace gameplay
|
|
|
-{
|
|
|
-
|
|
|
-Curve::Curve(unsigned int pointCount, unsigned int componentCount)
|
|
|
- : _pointCount(pointCount), _componentCount(componentCount), _componentSize(sizeof(float)*componentCount), _quaternionOffset(NULL), _points(NULL)
|
|
|
-{
|
|
|
- _points = new Point[_pointCount];
|
|
|
- for (unsigned int i = 0; i < _pointCount; i++)
|
|
|
- {
|
|
|
- _points[i].time = 0.0f;
|
|
|
- _points[i].value = new float[_componentCount];
|
|
|
- _points[i].inValue = new float[_componentCount];
|
|
|
- _points[i].outValue = new float[_componentCount];
|
|
|
- _points[i].type = LINEAR;
|
|
|
- }
|
|
|
- _points[_pointCount - 1].time = 1.0f;
|
|
|
-}
|
|
|
-
|
|
|
-Curve::~Curve()
|
|
|
-{
|
|
|
- SAFE_DELETE_ARRAY(_points);
|
|
|
- SAFE_DELETE_ARRAY(_quaternionOffset);
|
|
|
-}
|
|
|
-
|
|
|
-Curve::Point::Point()
|
|
|
- : time(0.0f), value(NULL), inValue(NULL), outValue(NULL)
|
|
|
-{
|
|
|
-}
|
|
|
-
|
|
|
-Curve::Point::~Point()
|
|
|
-{
|
|
|
- SAFE_DELETE_ARRAY(value);
|
|
|
- SAFE_DELETE_ARRAY(inValue);
|
|
|
- SAFE_DELETE_ARRAY(outValue);
|
|
|
-}
|
|
|
-
|
|
|
-unsigned int Curve::getPointCount() const
|
|
|
-{
|
|
|
- return _pointCount;
|
|
|
-}
|
|
|
-
|
|
|
-unsigned int Curve::getComponentCount() const
|
|
|
-{
|
|
|
- return _componentCount;
|
|
|
-}
|
|
|
-
|
|
|
-float Curve::getStartTime() const
|
|
|
-{
|
|
|
- return _points[0].time;
|
|
|
-}
|
|
|
-
|
|
|
-float Curve::getEndTime() const
|
|
|
-{
|
|
|
- return _points[_pointCount-1].time;
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::setPoint(unsigned int index, float time, float* value, InterpolationType type)
|
|
|
-{
|
|
|
- setPoint(index, time, value, type, NULL, NULL);
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::setPoint(unsigned int index, float time, float* value, InterpolationType type, float* inValue, float* outValue)
|
|
|
-{
|
|
|
- assert(index < _pointCount && time >= 0.0f && time <= 1.0f && !(index == 0 && time != 0.0f) && !(index == _pointCount - 1 && time != 1.0f));
|
|
|
-
|
|
|
- _points[index].time = time;
|
|
|
- _points[index].type = type;
|
|
|
-
|
|
|
- if (value)
|
|
|
- memcpy(_points[index].value, value, _componentSize);
|
|
|
-
|
|
|
- if (inValue)
|
|
|
- memcpy(_points[index].inValue, inValue, _componentSize);
|
|
|
-
|
|
|
- if (outValue)
|
|
|
- memcpy(_points[index].outValue, outValue, _componentSize);
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::setTangent(unsigned int index, InterpolationType type, float* inValue, float* outValue)
|
|
|
-{
|
|
|
- assert(index < _pointCount);
|
|
|
-
|
|
|
- _points[index].type = type;
|
|
|
-
|
|
|
- if (inValue)
|
|
|
- memcpy(_points[index].inValue, inValue, _componentSize);
|
|
|
-
|
|
|
- if (outValue)
|
|
|
- memcpy(_points[index].outValue, outValue, _componentSize);
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::evaluate(float time, float* dst) const
|
|
|
-{
|
|
|
- assert(dst && time >= 0 && time <= 1.0f);
|
|
|
-
|
|
|
- // Check if we are at or beyond the bounds of the curve.
|
|
|
- if (time <= _points[0].time)
|
|
|
- {
|
|
|
- memcpy(dst, _points[0].value, _componentSize);
|
|
|
- return;
|
|
|
- }
|
|
|
- else if (time >= _points[_pointCount - 1].time)
|
|
|
- {
|
|
|
- memcpy(dst, _points[_pointCount - 1].value, _componentSize);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // Locate the points we are interpolating between using a binary search.
|
|
|
- unsigned int index = determineIndex(time);
|
|
|
-
|
|
|
- Point* from = _points + index;
|
|
|
- Point* to = _points + (index + 1);
|
|
|
-
|
|
|
- // Calculate the fractional time between the two points.
|
|
|
- float scale = (to->time - from->time);
|
|
|
- float t = (time - from->time) / scale;
|
|
|
-
|
|
|
- // Calculate the value of the curve discretely if appropriate.
|
|
|
- switch (from->type)
|
|
|
- {
|
|
|
- case BEZIER:
|
|
|
- {
|
|
|
- interpolateBezier(t, from, to, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
- case BSPLINE:
|
|
|
- {
|
|
|
- Point* c0;
|
|
|
- Point* c1;
|
|
|
- if (index == 0)
|
|
|
- {
|
|
|
- c0 = from;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- c0 = (_points + index - 1);
|
|
|
- }
|
|
|
-
|
|
|
- if (index == _pointCount - 2)
|
|
|
- {
|
|
|
- c1 = to;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- c1 = (_points + index + 2);
|
|
|
- }
|
|
|
- interpolateBSpline(t, c0, from, to, c1, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
- case FLAT:
|
|
|
- {
|
|
|
- interpolateHermiteFlat(t, from, to, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
- case HERMITE:
|
|
|
- {
|
|
|
- interpolateHermite(t, from, to, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
- case LINEAR:
|
|
|
- {
|
|
|
- // Can just break here because linear formula follows switch
|
|
|
- break;
|
|
|
- }
|
|
|
- case SMOOTH:
|
|
|
- {
|
|
|
- interpolateHermiteSmooth(t, index, from, to, dst);
|
|
|
- return;
|
|
|
- }
|
|
|
- case STEP:
|
|
|
- {
|
|
|
- memcpy(dst, from->value, _componentSize);
|
|
|
- return;
|
|
|
- }
|
|
|
- case QUADRATIC_IN:
|
|
|
- {
|
|
|
- t *= t;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUADRATIC_OUT:
|
|
|
- {
|
|
|
- t *= -(t - 2.0f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUADRATIC_IN_OUT:
|
|
|
- {
|
|
|
- float tx2 = t * 2.0f;
|
|
|
-
|
|
|
- if (tx2 < 1.0f)
|
|
|
- t = 0.5f * (tx2 * tx2);
|
|
|
- else
|
|
|
- {
|
|
|
- float temp = tx2 - 1.0f;
|
|
|
- t = 0.5f * (-( temp * (temp - 2.0f)) + 1.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUADRATIC_OUT_IN:
|
|
|
- {
|
|
|
- if (t < 0.5f)
|
|
|
- {
|
|
|
- t = 2.0f * t * (1.0f - t);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 1.0f + 2.0f * t * (t - 1.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case CUBIC_IN:
|
|
|
- {
|
|
|
- t *= t * t;
|
|
|
- break;
|
|
|
- }
|
|
|
- case CUBIC_OUT:
|
|
|
- {
|
|
|
- t--;
|
|
|
- t = t * t * t + 1;
|
|
|
- break;
|
|
|
- }
|
|
|
- case CUBIC_IN_OUT:
|
|
|
- {
|
|
|
- if ((t *= 2.0f) < 1.0f)
|
|
|
- {
|
|
|
- t = t * t * t * 0.5f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 2.0f;
|
|
|
- t = (t * t * t + 2.0f) * 0.5f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case CUBIC_OUT_IN:
|
|
|
- {
|
|
|
- t = (2.0f * t - 1.0f);
|
|
|
- t = (t * t * t + 1) * 0.5f;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUARTIC_IN:
|
|
|
- {
|
|
|
- t *= t * t * t;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUARTIC_OUT:
|
|
|
- {
|
|
|
- t--;
|
|
|
- t = -(t * t * t * t) + 1.0f;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUARTIC_IN_OUT:
|
|
|
- {
|
|
|
- t *= 2.0f;
|
|
|
- if (t < 1.0f)
|
|
|
- {
|
|
|
- t = 0.5f * t * t * t * t;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 2.0f;
|
|
|
- t = -0.5f * (t * t * t * t - 2.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUARTIC_OUT_IN:
|
|
|
- {
|
|
|
- t = 2.0f * t - 1.0f;
|
|
|
- if (t < 0.0f)
|
|
|
- {
|
|
|
- t = 0.5f * (-(t * t) * t * t + 1.0f);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * (t * t * t * t + 1.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUINTIC_IN:
|
|
|
- {
|
|
|
- t *= t * t * t * t;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUINTIC_OUT:
|
|
|
- {
|
|
|
- t--;
|
|
|
- t = t * t * t * t * t + 1.0f;
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUINTIC_IN_OUT:
|
|
|
- {
|
|
|
- t *= 2.0f;
|
|
|
- if (t < 1.0f)
|
|
|
- {
|
|
|
- t = 0.5f * t * t * t * t * t;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 2.0f;
|
|
|
- t = 0.5f * (t * t * t * t * t + 2.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case QUINTIC_OUT_IN:
|
|
|
- {
|
|
|
- t = 2.0f * t - 1.0f;
|
|
|
- t = 0.5f * (t * t * t * t * t + 1.0f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case SINE_IN:
|
|
|
- {
|
|
|
- t = -(cos(t * MATH_PIOVER2) - 1.0f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case SINE_OUT:
|
|
|
- {
|
|
|
- t = sin(t * MATH_PIOVER2);
|
|
|
- break;
|
|
|
- }
|
|
|
- case SINE_IN_OUT:
|
|
|
- {
|
|
|
- t = -0.5f * (cos(MATH_PI * t) - 1.0f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case SINE_OUT_IN:
|
|
|
- {
|
|
|
- if (t < 0.5f)
|
|
|
- {
|
|
|
- t = 0.5f * sin(MATH_PI * t);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = -0.5f * cos(MATH_PIOVER2 * (2.0f * t - 1.0f)) + 1.0f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case EXPONENTIAL_IN:
|
|
|
- {
|
|
|
- if (t != 0.0f)
|
|
|
- {
|
|
|
- t = exp(10.0f * (t - 1.0f));
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case EXPONENTIAL_OUT:
|
|
|
- {
|
|
|
- if (t != 1.0f)
|
|
|
- {
|
|
|
- t = -exp(-10.0f * t) + 1.0f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case EXPONENTIAL_IN_OUT:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- if (t < 0.5f)
|
|
|
- {
|
|
|
- t = 0.5f * exp(10.0f * (2.0f * t - 1.0f));
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = -0.5f * exp(10.0f * (-2.0f * t + 1.0f)) + 1.0f;
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case EXPONENTIAL_OUT_IN:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- if (t < 0.5f)
|
|
|
- {
|
|
|
- t = -0.5f * exp(-20.0f * t) + 0.5f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * exp(20.0f * (t - 1.0f)) + 0.5f;
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case CIRCULAR_IN:
|
|
|
- {
|
|
|
- t = -(sqrt(1.0f - t * t) - 1.0f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case CIRCULAR_OUT:
|
|
|
- {
|
|
|
- t--;
|
|
|
- t = sqrt(1.0f - t * t);
|
|
|
- break;
|
|
|
- }
|
|
|
- case CIRCULAR_IN_OUT:
|
|
|
- {
|
|
|
- t *= 2.0f;
|
|
|
- if (t < 1.0f)
|
|
|
- {
|
|
|
- t = 0.5f * (-sqrt((1.0f - t * t)) + 1.0f);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 2.0f;
|
|
|
- t = 0.5f * (sqrt((1.0f - t * t)) + 1.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case CIRCULAR_OUT_IN:
|
|
|
- {
|
|
|
- t = 2.0f * t - 1.0f;
|
|
|
- if (t < 0.0f)
|
|
|
- {
|
|
|
- t = 0.5f * sqrt(1.0f - t * t);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * (2.0f - sqrt(1.0f - t * t));
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case ELASTIC_IN:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- t = t - 1.0f;
|
|
|
- t = -1.0f * ( exp(10.0f * t) * sin( (t - 0.075f) * MATH_PIX2 / 0.3f ) );
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case ELASTIC_OUT:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- t = exp(-10.0f * t) * sin((t - 0.075f) * MATH_PIX2 / 0.3f) + 1.0f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case ELASTIC_IN_OUT:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- t = 2.0f * t - 1.0f;
|
|
|
- if (t < 0.0f)
|
|
|
- {
|
|
|
- t = -0.5f * (exp((10 * t)) * sin(((t - 0.1125f) * MATH_PIX2 / 0.45f)));
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * exp((-10 * t)) * sin(((t - 0.1125f) * MATH_PIX2 / 0.45f)) + 1.0f;
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case ELASTIC_OUT_IN:
|
|
|
- {
|
|
|
- if (t != 0.0f && t != 1.0f)
|
|
|
- {
|
|
|
- t *= 2.0f;
|
|
|
- if (t < 1.0f)
|
|
|
- {
|
|
|
- t = 0.5f * (exp((-10 * t)) * sin(((t - 0.1125f) * (MATH_PIX2) / 0.45f))) + 0.5f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * (exp((10 *(t - 2))) * sin(((t - 0.1125f) * (MATH_PIX2) / 0.45f))) + 0.5f;
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case OVERSHOOT_IN:
|
|
|
- {
|
|
|
- t = t * t * (2.70158f * t - 1.70158f);
|
|
|
- break;
|
|
|
- }
|
|
|
- case OVERSHOOT_OUT:
|
|
|
- {
|
|
|
- t--;
|
|
|
- t = t * t * (2.70158f * t + 1.70158f) + 1;
|
|
|
- break;
|
|
|
- }
|
|
|
- case OVERSHOOT_IN_OUT:
|
|
|
- {
|
|
|
- t *= 2.0f;
|
|
|
- if (t < 1.0f)
|
|
|
- {
|
|
|
- t = 0.5f * t * t * (3.5949095f * t - 2.5949095f);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 2.0f;
|
|
|
- t = 0.5f * (t * t * (3.5949095f * t + 2.5949095f) + 2.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case OVERSHOOT_OUT_IN:
|
|
|
- {
|
|
|
- t = 2.0f * t - 1.0f;
|
|
|
- if (t < 0.0f)
|
|
|
- {
|
|
|
- t = 0.5f * (t * t * (3.5949095f * t + 2.5949095f) + 1.0f);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = 0.5f * (t * t * (3.5949095f * t - 2.5949095f) + 1.0f);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case BOUNCE_IN:
|
|
|
- {
|
|
|
- t = 1.0f - t;
|
|
|
-
|
|
|
- if (t < 0.36363636363636365f)
|
|
|
- {
|
|
|
- t = 7.5625f * t * t;
|
|
|
- }
|
|
|
- else if (t < 0.7272727272727273f)
|
|
|
- {
|
|
|
- t -= 0.5454545454545454f;
|
|
|
- t = 7.5625f * t * t + 0.75f;
|
|
|
- }
|
|
|
- else if (t < 0.9090909090909091f)
|
|
|
- {
|
|
|
- t -= 0.8181818181818182f;
|
|
|
- t = 7.5625f * t * t + 0.9375f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 0.9545454545454546f;
|
|
|
- t = 7.5625f * t * t + 0.984375f;
|
|
|
- }
|
|
|
-
|
|
|
- t = 1.0f - t;
|
|
|
- break;
|
|
|
- }
|
|
|
- case BOUNCE_OUT:
|
|
|
- {
|
|
|
- if (t < 0.36363636363636365f)
|
|
|
- {
|
|
|
- t = 7.5625f * t * t;
|
|
|
- }
|
|
|
- else if (t < 0.7272727272727273f)
|
|
|
- {
|
|
|
- t -= 0.5454545454545454f;
|
|
|
- t = 7.5625f * t * t + 0.75f;
|
|
|
- }
|
|
|
- else if (t < 0.9090909090909091f)
|
|
|
- {
|
|
|
- t -= 0.8181818181818182f;
|
|
|
- t = 7.5625f * t * t + 0.9375f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 0.9545454545454546f;
|
|
|
- t = 7.5625f * t * t + 0.984375f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case BOUNCE_IN_OUT:
|
|
|
- {
|
|
|
- if (t < 0.5f)
|
|
|
- {
|
|
|
- t = 1.0f - t * 2.0f;
|
|
|
-
|
|
|
- if (t < 0.36363636363636365f)
|
|
|
- {
|
|
|
- t = 7.5625f * t * t;
|
|
|
- }
|
|
|
- else if (t < 0.7272727272727273f)
|
|
|
- {
|
|
|
- t -= 0.5454545454545454f;
|
|
|
- t = 7.5625f * t * t + 0.75f;
|
|
|
- }
|
|
|
- else if (t < 0.9090909090909091f)
|
|
|
- {
|
|
|
- t -= 0.8181818181818182f;
|
|
|
- t = 7.5625f * t * t + 0.9375f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 0.9545454545454546f;
|
|
|
- t = 7.5625f * t * t + 0.984375f;
|
|
|
- }
|
|
|
-
|
|
|
- t = (1.0f - t) * 0.5f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = t * 2.0f - 1.0f;
|
|
|
- if (t < 0.36363636363636365f)
|
|
|
- {
|
|
|
- t = 7.5625f * t * t;
|
|
|
- }
|
|
|
- else if (t < 0.7272727272727273f)
|
|
|
- {
|
|
|
- t -= 0.5454545454545454f;
|
|
|
- t = 7.5625f * t * t + 0.75f;
|
|
|
- }
|
|
|
- else if (t < 0.9090909090909091f)
|
|
|
- {
|
|
|
- t -= 0.8181818181818182f;
|
|
|
- t = 7.5625f * t * t + 0.9375f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t -= 0.9545454545454546f;
|
|
|
- t = 7.5625f * t * t + 0.984375f;
|
|
|
- }
|
|
|
-
|
|
|
- t = 0.5f * t + 0.5f;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case BOUNCE_OUT_IN:
|
|
|
- {
|
|
|
- if (t < 0.1818181818f)
|
|
|
- {
|
|
|
- t = 15.125f * t * t;
|
|
|
- }
|
|
|
- else if (t < 0.3636363636f)
|
|
|
- {
|
|
|
- t = 1.5f + (-8.250000001f + 15.125f * t) * t;
|
|
|
- }
|
|
|
- else if (t < 0.4545454546f)
|
|
|
- {
|
|
|
- t = 3.0f + (-12.375f + 15.125f * t) * t;
|
|
|
- }
|
|
|
- else if (t < 0.5f)
|
|
|
- {
|
|
|
- t = 3.9375f + (-14.4375f + 15.125f * t) * t;
|
|
|
- }
|
|
|
- else if (t <= 0.5454545455f)
|
|
|
- {
|
|
|
- t = -3.625000004f + (15.81250001f - 15.125f * t) * t;
|
|
|
- }
|
|
|
- else if (t <= 0.6363636365f)
|
|
|
- {
|
|
|
- t = -4.75f + (17.875f - 15.125f * t) * t;
|
|
|
- }
|
|
|
- else if (t <= 0.8181818180f)
|
|
|
- {
|
|
|
- t = -7.374999995f + (21.99999999f - 15.125f * t) * t;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- t = -14.125f + (30.25f - 15.125f * t) * t;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- interpolateLinear(t, from, to, dst);
|
|
|
-}
|
|
|
-
|
|
|
-float Curve::lerp(float t, float from, float to)
|
|
|
-{
|
|
|
- return lerpInl(t, from, to);
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::setQuaternionOffset(unsigned int offset)
|
|
|
-{
|
|
|
- assert(offset <= (_componentCount - 4));
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- _quaternionOffset = new unsigned int[1];
|
|
|
-
|
|
|
- *_quaternionOffset = offset;
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateBezier(float s, Point* from, Point* to, float* dst) const
|
|
|
-{
|
|
|
- float s_2 = s * s;
|
|
|
- float eq0 = 1 - s;
|
|
|
- float eq0_2 = eq0 * eq0;
|
|
|
- float eq1 = eq0_2 * eq0;
|
|
|
- float eq2 = 3 * s * eq0_2;
|
|
|
- float eq3 = 3 * s_2 * eq0;
|
|
|
- float eq4 = s_2 * s;
|
|
|
-
|
|
|
- float* fromValue = from->value;
|
|
|
- float* toValue = to->value;
|
|
|
- float* outValue = from->outValue;
|
|
|
- float* inValue = to->inValue;
|
|
|
-
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- float interpTime = bezier(eq1, eq2, eq3, eq4, from->time, outValue[i], to->time, inValue[i]);
|
|
|
- interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
-
|
|
|
- // Handle remaining components (if any) as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateBSpline(float s, Point* c0, Point* c1, Point* c2, Point* c3, float* dst) const
|
|
|
-{
|
|
|
- float s_2 = s * s;
|
|
|
- float s_3 = s_2 * s;
|
|
|
- float eq0 = (-s_3 + 3 * s_2 - 3 * s + 1) / 6.0f;
|
|
|
- float eq1 = (3 * s_3 - 6 * s_2 + 4) / 6.0f;
|
|
|
- float eq2 = (-3 * s_3 + 3 * s_2 + 3 * s + 1) / 6.0f;
|
|
|
- float eq3 = s_3 / 6.0f;
|
|
|
-
|
|
|
- float* c0Value = c0->value;
|
|
|
- float* c1Value = c1->value;
|
|
|
- float* c2Value = c2->value;
|
|
|
- float* c3Value = c3->value;
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (c1Value[i] == c2Value[i])
|
|
|
- dst[i] = c1Value[i];
|
|
|
- else
|
|
|
- dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (c1Value[i] == c2Value[i])
|
|
|
- dst[i] = c1Value[i];
|
|
|
- else
|
|
|
- dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- float interpTime;
|
|
|
- if (c0->time == c1->time)
|
|
|
- interpTime = bspline(eq0, eq1, eq2, eq3, -c0->time, c1->time, c2->time, c3->time);
|
|
|
- else if (c2->time == c3->time)
|
|
|
- interpTime = bspline(eq0, eq1, eq2, eq3, c0->time, c1->time, c2->time, -c3->time);
|
|
|
- else
|
|
|
- interpTime = bspline(eq0, eq1, eq2, eq3, c0->time, c1->time, c2->time, c3->time);
|
|
|
- interpolateQuaternion(s, (c1Value + i) , (c2Value + i), (dst + i));
|
|
|
-
|
|
|
- // Handle remaining components (if any) as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (c1Value[i] == c2Value[i])
|
|
|
- dst[i] = c1Value[i];
|
|
|
- else
|
|
|
- dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateHermite(float s, Point* from, Point* to, float* dst) const
|
|
|
-{
|
|
|
- // Calculate the hermite basis functions.
|
|
|
- float s_2 = s * s; // t^2
|
|
|
- float s_3 = s_2 * s; // t^3
|
|
|
- float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
- float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
- float h10 = s_3 - 2 * s_2 + s; // basis function 2
|
|
|
- float h11 = s_3 - s_2; // basis function 3
|
|
|
-
|
|
|
- float* fromValue = from->value;
|
|
|
- float* toValue = to->value;
|
|
|
- float* outValue = from->outValue;
|
|
|
- float* inValue = to->inValue;
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- float interpTime = hermite(h00, h01, h10, h11, from->time, outValue[i], to->time, inValue[i]);
|
|
|
- interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
-
|
|
|
- // Handle remaining components (if any) as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateHermiteFlat(float s, Point* from, Point* to, float* dst) const
|
|
|
-{
|
|
|
- // Calculate the hermite basis functions.
|
|
|
- float s_2 = s * s; // t^2
|
|
|
- float s_3 = s_2 * s; // t^3
|
|
|
- float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
- float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
-
|
|
|
- float* fromValue = from->value;
|
|
|
- float* toValue = to->value;
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- float interpTime = hermiteFlat(h00, h01, from->time, to->time);
|
|
|
- interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
-
|
|
|
- // Handle remaining components (if any) as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateHermiteSmooth(float s, unsigned int index, Point* from, Point* to, float* dst) const
|
|
|
-{
|
|
|
- // Calculate the hermite basis functions.
|
|
|
- float s_2 = s * s; // t^2
|
|
|
- float s_3 = s_2 * s; // t^3
|
|
|
- float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
- float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
- float h10 = s_3 - 2 * s_2 + s; // basis function 2
|
|
|
- float h11 = s_3 - s_2; // basis function 3
|
|
|
-
|
|
|
- float inValue;
|
|
|
- float outValue;
|
|
|
-
|
|
|
- float* fromValue = from->value;
|
|
|
- float* toValue = to->value;
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- {
|
|
|
- dst[i] = fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (index == 0)
|
|
|
- {
|
|
|
- outValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
- }
|
|
|
-
|
|
|
- if (index == _pointCount - 2)
|
|
|
- {
|
|
|
- inValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
- }
|
|
|
-
|
|
|
- dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- {
|
|
|
- dst[i] = fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (index == 0)
|
|
|
- {
|
|
|
- outValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
- }
|
|
|
-
|
|
|
- if (index == _pointCount - 2)
|
|
|
- {
|
|
|
- inValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
- }
|
|
|
-
|
|
|
- dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- if (index == 0)
|
|
|
- {
|
|
|
- outValue = to->time - from->time;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- outValue = (to->time - (from - 1)->time) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
- }
|
|
|
-
|
|
|
- if (index == _pointCount - 2)
|
|
|
- {
|
|
|
- inValue = to->time - from->time;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- inValue = ((to + 1)->time - from->time) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
- }
|
|
|
-
|
|
|
- float interpTime = hermiteSmooth(h00, h01, h10, h11, from->time, outValue, to->time, inValue);
|
|
|
- interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
-
|
|
|
- // Handle remaining components (if any) as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- {
|
|
|
- dst[i] = fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate as scalar.
|
|
|
- if (index == 0)
|
|
|
- {
|
|
|
- outValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
- }
|
|
|
-
|
|
|
- if (index == _pointCount - 2)
|
|
|
- {
|
|
|
- inValue = toValue[i] - fromValue[i];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
- }
|
|
|
-
|
|
|
- dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateLinear(float s, Point* from, Point* to, float* dst) const
|
|
|
-{
|
|
|
- float* fromValue = from->value;
|
|
|
- float* toValue = to->value;
|
|
|
-
|
|
|
- if (!_quaternionOffset)
|
|
|
- {
|
|
|
- for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Interpolate any values up to the quaternion offset as scalars.
|
|
|
- unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
- unsigned int i = 0;
|
|
|
- for (i = 0; i < quaternionOffset; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
-
|
|
|
- // Handle quaternion component.
|
|
|
- interpolateQuaternion(s, (fromValue + i), (toValue + i), (dst + i));
|
|
|
-
|
|
|
- // handle any remaining components as scalars
|
|
|
- for (i += 4; i < _componentCount; i++)
|
|
|
- {
|
|
|
- if (fromValue[i] == toValue[i])
|
|
|
- dst[i] = fromValue[i];
|
|
|
- else
|
|
|
- dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void Curve::interpolateQuaternion(float s, float* from, float* to, float* dst) const
|
|
|
-{
|
|
|
- // Evaluate.
|
|
|
- if (s >= 0)
|
|
|
- {
|
|
|
- Quaternion::slerp(from[0], from[1], from[2], from[3], to[0], to[1], to[2], to[3], s, dst, dst + 1, dst + 2, dst + 3);
|
|
|
- }
|
|
|
- else
|
|
|
- Quaternion::slerp(to[0], to[1], to[2], to[3], from[0], from[1], from[2], from[3], s, dst, dst + 1, dst + 2, dst + 3);
|
|
|
-
|
|
|
- //((Quaternion*) dst)->normalize();
|
|
|
-}
|
|
|
-
|
|
|
-int Curve::determineIndex(float time) const
|
|
|
-{
|
|
|
- unsigned int min = 0;
|
|
|
- unsigned int max = _pointCount - 1;
|
|
|
- unsigned int mid = 0;
|
|
|
-
|
|
|
- // Do a binary search to determine the index.
|
|
|
- do
|
|
|
- {
|
|
|
- mid = (min + max) >> 1;
|
|
|
-
|
|
|
- if (time >= _points[mid].time && time <= _points[mid + 1].time)
|
|
|
- return mid;
|
|
|
- else if (time < _points[mid].time)
|
|
|
- max = mid - 1;
|
|
|
- else
|
|
|
- min = mid + 1;
|
|
|
- } while (min <= max);
|
|
|
-
|
|
|
- // We should never hit this!
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-int Curve::getInterpolationType(const char* curveId)
|
|
|
-{
|
|
|
- if (strcmp(curveId, "BEZIER") == 0)
|
|
|
- {
|
|
|
- return Curve::BEZIER;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "BSPLINE") == 0)
|
|
|
- {
|
|
|
- return Curve::BSPLINE;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "FLAT") == 0)
|
|
|
- {
|
|
|
- return Curve::FLAT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "HERMITE") == 0)
|
|
|
- {
|
|
|
- return Curve::HERMITE;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "LINEAR") == 0)
|
|
|
- {
|
|
|
- return Curve::LINEAR;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "SMOOTH") == 0)
|
|
|
- {
|
|
|
- return Curve::SMOOTH;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "STEP") == 0)
|
|
|
- {
|
|
|
- return Curve::STEP;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUADRATIC_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUADRATIC_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUADRATIC_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUADRATIC_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUADRATIC_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUADRATIC_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUADRATIC_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUADRATIC_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CUBIC_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::CUBIC_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CUBIC_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::CUBIC_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CUBIC_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::CUBIC_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CUBIC_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::CUBIC_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUARTIC_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUARTIC_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUARTIC_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUARTIC_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUARTIC_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUARTIC_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUARTIC_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUARTIC_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUINTIC_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUINTIC_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUINTIC_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUINTIC_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUINTIC_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::QUINTIC_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "QUINTIC_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::QUINTIC_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "SINE_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::SINE_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "SINE_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::SINE_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "SINE_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::SINE_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "SINE_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::SINE_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "EXPONENTIAL_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::EXPONENTIAL_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "EXPONENTIAL_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::EXPONENTIAL_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "EXPONENTIAL_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::EXPONENTIAL_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "EXPONENTIAL_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::EXPONENTIAL_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CIRCULAR_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::CIRCULAR_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CIRCULAR_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::CIRCULAR_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CIRCULAR_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::CIRCULAR_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "CIRCULAR_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::CIRCULAR_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "ELASTIC_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::ELASTIC_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "ELASTIC_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::ELASTIC_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "ELASTIC_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::ELASTIC_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "ELASTIC_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::ELASTIC_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "OVERSHOOT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::OVERSHOOT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "OVERSHOOT_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::OVERSHOOT_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "OVERSHOOT_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::OVERSHOOT_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "OVERSHOOT_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::OVERSHOOT_OUT_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "BOUNCE_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::BOUNCE_IN;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "BOUNCE_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::BOUNCE_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "BOUNCE_IN_OUT") == 0)
|
|
|
- {
|
|
|
- return Curve::BOUNCE_IN_OUT;
|
|
|
- }
|
|
|
- else if (strcmp(curveId, "BOUNCE_OUT_IN") == 0)
|
|
|
- {
|
|
|
- return Curve::BOUNCE_OUT_IN;
|
|
|
- }
|
|
|
-
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-}
|
|
|
+// Purposely not including Base.h here, or any other gameplay dependencies
|
|
|
+// so this class can be reused between gameplay and gameplay-encoder.
|
|
|
+#include "Curve.h"
|
|
|
+#include "Quaternion.h"
|
|
|
+#include <cassert>
|
|
|
+#include <cmath>
|
|
|
+#include <memory>
|
|
|
+
|
|
|
+using std::memcpy;
|
|
|
+using std::fabs;
|
|
|
+using std::sqrt;
|
|
|
+using std::cos;
|
|
|
+using std::sin;
|
|
|
+using std::exp;
|
|
|
+using std::strcmp;
|
|
|
+
|
|
|
+#ifndef NULL
|
|
|
+#define NULL 0
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef MATH_PI
|
|
|
+#define MATH_PI 3.14159265358979323846f
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef MATH_PIOVER2
|
|
|
+#define MATH_PIOVER2 1.57079632679489661923f
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef MATH_PIX2
|
|
|
+#define MATH_PIX2 6.28318530717958647693f
|
|
|
+#endif
|
|
|
+
|
|
|
+// Object deletion macro
|
|
|
+#ifndef SAFE_DELETE
|
|
|
+#define SAFE_DELETE(x) \
|
|
|
+ if (x) \
|
|
|
+ { \
|
|
|
+ delete x; \
|
|
|
+ x = NULL; \
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+// Array deletion macro
|
|
|
+#ifndef SAFE_DELETE_ARRAY
|
|
|
+#define SAFE_DELETE_ARRAY(x) \
|
|
|
+ if (x) \
|
|
|
+ { \
|
|
|
+ delete[] x; \
|
|
|
+ x = NULL; \
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+namespace gameplay
|
|
|
+{
|
|
|
+
|
|
|
+Curve::Curve(unsigned int pointCount, unsigned int componentCount)
|
|
|
+ : _pointCount(pointCount), _componentCount(componentCount), _componentSize(sizeof(float)*componentCount), _quaternionOffset(NULL), _points(NULL)
|
|
|
+{
|
|
|
+ _points = new Point[_pointCount];
|
|
|
+ for (unsigned int i = 0; i < _pointCount; i++)
|
|
|
+ {
|
|
|
+ _points[i].time = 0.0f;
|
|
|
+ _points[i].value = new float[_componentCount];
|
|
|
+ _points[i].inValue = new float[_componentCount];
|
|
|
+ _points[i].outValue = new float[_componentCount];
|
|
|
+ _points[i].type = LINEAR;
|
|
|
+ }
|
|
|
+ _points[_pointCount - 1].time = 1.0f;
|
|
|
+}
|
|
|
+
|
|
|
+Curve::~Curve()
|
|
|
+{
|
|
|
+ SAFE_DELETE_ARRAY(_points);
|
|
|
+ SAFE_DELETE_ARRAY(_quaternionOffset);
|
|
|
+}
|
|
|
+
|
|
|
+Curve::Point::Point()
|
|
|
+ : time(0.0f), value(NULL), inValue(NULL), outValue(NULL)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+Curve::Point::~Point()
|
|
|
+{
|
|
|
+ SAFE_DELETE_ARRAY(value);
|
|
|
+ SAFE_DELETE_ARRAY(inValue);
|
|
|
+ SAFE_DELETE_ARRAY(outValue);
|
|
|
+}
|
|
|
+
|
|
|
+unsigned int Curve::getPointCount() const
|
|
|
+{
|
|
|
+ return _pointCount;
|
|
|
+}
|
|
|
+
|
|
|
+unsigned int Curve::getComponentCount() const
|
|
|
+{
|
|
|
+ return _componentCount;
|
|
|
+}
|
|
|
+
|
|
|
+float Curve::getStartTime() const
|
|
|
+{
|
|
|
+ return _points[0].time;
|
|
|
+}
|
|
|
+
|
|
|
+float Curve::getEndTime() const
|
|
|
+{
|
|
|
+ return _points[_pointCount-1].time;
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::setPoint(unsigned int index, float time, float* value, InterpolationType type)
|
|
|
+{
|
|
|
+ setPoint(index, time, value, type, NULL, NULL);
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::setPoint(unsigned int index, float time, float* value, InterpolationType type, float* inValue, float* outValue)
|
|
|
+{
|
|
|
+ assert(index < _pointCount && time >= 0.0f && time <= 1.0f && !(index == 0 && time != 0.0f) && !(index == _pointCount - 1 && time != 1.0f));
|
|
|
+
|
|
|
+ _points[index].time = time;
|
|
|
+ _points[index].type = type;
|
|
|
+
|
|
|
+ if (value)
|
|
|
+ memcpy(_points[index].value, value, _componentSize);
|
|
|
+
|
|
|
+ if (inValue)
|
|
|
+ memcpy(_points[index].inValue, inValue, _componentSize);
|
|
|
+
|
|
|
+ if (outValue)
|
|
|
+ memcpy(_points[index].outValue, outValue, _componentSize);
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::setTangent(unsigned int index, InterpolationType type, float* inValue, float* outValue)
|
|
|
+{
|
|
|
+ assert(index < _pointCount);
|
|
|
+
|
|
|
+ _points[index].type = type;
|
|
|
+
|
|
|
+ if (inValue)
|
|
|
+ memcpy(_points[index].inValue, inValue, _componentSize);
|
|
|
+
|
|
|
+ if (outValue)
|
|
|
+ memcpy(_points[index].outValue, outValue, _componentSize);
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::evaluate(float time, float* dst) const
|
|
|
+{
|
|
|
+ assert(dst && time >= 0 && time <= 1.0f);
|
|
|
+
|
|
|
+ // Check if we are at or beyond the bounds of the curve.
|
|
|
+ if (time <= _points[0].time)
|
|
|
+ {
|
|
|
+ memcpy(dst, _points[0].value, _componentSize);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ else if (time >= _points[_pointCount - 1].time)
|
|
|
+ {
|
|
|
+ memcpy(dst, _points[_pointCount - 1].value, _componentSize);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Locate the points we are interpolating between using a binary search.
|
|
|
+ unsigned int index = determineIndex(time);
|
|
|
+
|
|
|
+ Point* from = _points + index;
|
|
|
+ Point* to = _points + (index + 1);
|
|
|
+
|
|
|
+ // Calculate the fractional time between the two points.
|
|
|
+ float scale = (to->time - from->time);
|
|
|
+ float t = (time - from->time) / scale;
|
|
|
+
|
|
|
+ // Calculate the value of the curve discretely if appropriate.
|
|
|
+ switch (from->type)
|
|
|
+ {
|
|
|
+ case BEZIER:
|
|
|
+ {
|
|
|
+ interpolateBezier(t, from, to, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case BSPLINE:
|
|
|
+ {
|
|
|
+ Point* c0;
|
|
|
+ Point* c1;
|
|
|
+ if (index == 0)
|
|
|
+ {
|
|
|
+ c0 = from;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ c0 = (_points + index - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index == _pointCount - 2)
|
|
|
+ {
|
|
|
+ c1 = to;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ c1 = (_points + index + 2);
|
|
|
+ }
|
|
|
+ interpolateBSpline(t, c0, from, to, c1, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case FLAT:
|
|
|
+ {
|
|
|
+ interpolateHermiteFlat(t, from, to, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case HERMITE:
|
|
|
+ {
|
|
|
+ interpolateHermite(t, from, to, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case LINEAR:
|
|
|
+ {
|
|
|
+ // Can just break here because linear formula follows switch
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case SMOOTH:
|
|
|
+ {
|
|
|
+ interpolateHermiteSmooth(t, index, from, to, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case STEP:
|
|
|
+ {
|
|
|
+ memcpy(dst, from->value, _componentSize);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ case QUADRATIC_IN:
|
|
|
+ {
|
|
|
+ t *= t;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUADRATIC_OUT:
|
|
|
+ {
|
|
|
+ t *= -(t - 2.0f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUADRATIC_IN_OUT:
|
|
|
+ {
|
|
|
+ float tx2 = t * 2.0f;
|
|
|
+
|
|
|
+ if (tx2 < 1.0f)
|
|
|
+ t = 0.5f * (tx2 * tx2);
|
|
|
+ else
|
|
|
+ {
|
|
|
+ float temp = tx2 - 1.0f;
|
|
|
+ t = 0.5f * (-( temp * (temp - 2.0f)) + 1.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUADRATIC_OUT_IN:
|
|
|
+ {
|
|
|
+ if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = 2.0f * t * (1.0f - t);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 1.0f + 2.0f * t * (t - 1.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CUBIC_IN:
|
|
|
+ {
|
|
|
+ t *= t * t;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CUBIC_OUT:
|
|
|
+ {
|
|
|
+ t--;
|
|
|
+ t = t * t * t + 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CUBIC_IN_OUT:
|
|
|
+ {
|
|
|
+ if ((t *= 2.0f) < 1.0f)
|
|
|
+ {
|
|
|
+ t = t * t * t * 0.5f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 2.0f;
|
|
|
+ t = (t * t * t + 2.0f) * 0.5f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CUBIC_OUT_IN:
|
|
|
+ {
|
|
|
+ t = (2.0f * t - 1.0f);
|
|
|
+ t = (t * t * t + 1) * 0.5f;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUARTIC_IN:
|
|
|
+ {
|
|
|
+ t *= t * t * t;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUARTIC_OUT:
|
|
|
+ {
|
|
|
+ t--;
|
|
|
+ t = -(t * t * t * t) + 1.0f;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUARTIC_IN_OUT:
|
|
|
+ {
|
|
|
+ t *= 2.0f;
|
|
|
+ if (t < 1.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * t * t * t * t;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 2.0f;
|
|
|
+ t = -0.5f * (t * t * t * t - 2.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUARTIC_OUT_IN:
|
|
|
+ {
|
|
|
+ t = 2.0f * t - 1.0f;
|
|
|
+ if (t < 0.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * (-(t * t) * t * t + 1.0f);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * (t * t * t * t + 1.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUINTIC_IN:
|
|
|
+ {
|
|
|
+ t *= t * t * t * t;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUINTIC_OUT:
|
|
|
+ {
|
|
|
+ t--;
|
|
|
+ t = t * t * t * t * t + 1.0f;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUINTIC_IN_OUT:
|
|
|
+ {
|
|
|
+ t *= 2.0f;
|
|
|
+ if (t < 1.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * t * t * t * t * t;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 2.0f;
|
|
|
+ t = 0.5f * (t * t * t * t * t + 2.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case QUINTIC_OUT_IN:
|
|
|
+ {
|
|
|
+ t = 2.0f * t - 1.0f;
|
|
|
+ t = 0.5f * (t * t * t * t * t + 1.0f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case SINE_IN:
|
|
|
+ {
|
|
|
+ t = -(cos(t * MATH_PIOVER2) - 1.0f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case SINE_OUT:
|
|
|
+ {
|
|
|
+ t = sin(t * MATH_PIOVER2);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case SINE_IN_OUT:
|
|
|
+ {
|
|
|
+ t = -0.5f * (cos(MATH_PI * t) - 1.0f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case SINE_OUT_IN:
|
|
|
+ {
|
|
|
+ if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = 0.5f * sin(MATH_PI * t);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = -0.5f * cos(MATH_PIOVER2 * (2.0f * t - 1.0f)) + 1.0f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case EXPONENTIAL_IN:
|
|
|
+ {
|
|
|
+ if (t != 0.0f)
|
|
|
+ {
|
|
|
+ t = exp(10.0f * (t - 1.0f));
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case EXPONENTIAL_OUT:
|
|
|
+ {
|
|
|
+ if (t != 1.0f)
|
|
|
+ {
|
|
|
+ t = -exp(-10.0f * t) + 1.0f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case EXPONENTIAL_IN_OUT:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = 0.5f * exp(10.0f * (2.0f * t - 1.0f));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = -0.5f * exp(10.0f * (-2.0f * t + 1.0f)) + 1.0f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case EXPONENTIAL_OUT_IN:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = -0.5f * exp(-20.0f * t) + 0.5f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * exp(20.0f * (t - 1.0f)) + 0.5f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CIRCULAR_IN:
|
|
|
+ {
|
|
|
+ t = -(sqrt(1.0f - t * t) - 1.0f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CIRCULAR_OUT:
|
|
|
+ {
|
|
|
+ t--;
|
|
|
+ t = sqrt(1.0f - t * t);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CIRCULAR_IN_OUT:
|
|
|
+ {
|
|
|
+ t *= 2.0f;
|
|
|
+ if (t < 1.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * (-sqrt((1.0f - t * t)) + 1.0f);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 2.0f;
|
|
|
+ t = 0.5f * (sqrt((1.0f - t * t)) + 1.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case CIRCULAR_OUT_IN:
|
|
|
+ {
|
|
|
+ t = 2.0f * t - 1.0f;
|
|
|
+ if (t < 0.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * sqrt(1.0f - t * t);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * (2.0f - sqrt(1.0f - t * t));
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case ELASTIC_IN:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ t = t - 1.0f;
|
|
|
+ t = -1.0f * ( exp(10.0f * t) * sin( (t - 0.075f) * MATH_PIX2 / 0.3f ) );
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case ELASTIC_OUT:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ t = exp(-10.0f * t) * sin((t - 0.075f) * MATH_PIX2 / 0.3f) + 1.0f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case ELASTIC_IN_OUT:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ t = 2.0f * t - 1.0f;
|
|
|
+ if (t < 0.0f)
|
|
|
+ {
|
|
|
+ t = -0.5f * (exp((10 * t)) * sin(((t - 0.1125f) * MATH_PIX2 / 0.45f)));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * exp((-10 * t)) * sin(((t - 0.1125f) * MATH_PIX2 / 0.45f)) + 1.0f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case ELASTIC_OUT_IN:
|
|
|
+ {
|
|
|
+ if (t != 0.0f && t != 1.0f)
|
|
|
+ {
|
|
|
+ t *= 2.0f;
|
|
|
+ if (t < 1.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * (exp((-10 * t)) * sin(((t - 0.1125f) * (MATH_PIX2) / 0.45f))) + 0.5f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * (exp((10 *(t - 2))) * sin(((t - 0.1125f) * (MATH_PIX2) / 0.45f))) + 0.5f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case OVERSHOOT_IN:
|
|
|
+ {
|
|
|
+ t = t * t * (2.70158f * t - 1.70158f);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case OVERSHOOT_OUT:
|
|
|
+ {
|
|
|
+ t--;
|
|
|
+ t = t * t * (2.70158f * t + 1.70158f) + 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case OVERSHOOT_IN_OUT:
|
|
|
+ {
|
|
|
+ t *= 2.0f;
|
|
|
+ if (t < 1.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * t * t * (3.5949095f * t - 2.5949095f);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 2.0f;
|
|
|
+ t = 0.5f * (t * t * (3.5949095f * t + 2.5949095f) + 2.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case OVERSHOOT_OUT_IN:
|
|
|
+ {
|
|
|
+ t = 2.0f * t - 1.0f;
|
|
|
+ if (t < 0.0f)
|
|
|
+ {
|
|
|
+ t = 0.5f * (t * t * (3.5949095f * t + 2.5949095f) + 1.0f);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = 0.5f * (t * t * (3.5949095f * t - 2.5949095f) + 1.0f);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case BOUNCE_IN:
|
|
|
+ {
|
|
|
+ t = 1.0f - t;
|
|
|
+
|
|
|
+ if (t < 0.36363636363636365f)
|
|
|
+ {
|
|
|
+ t = 7.5625f * t * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.7272727272727273f)
|
|
|
+ {
|
|
|
+ t -= 0.5454545454545454f;
|
|
|
+ t = 7.5625f * t * t + 0.75f;
|
|
|
+ }
|
|
|
+ else if (t < 0.9090909090909091f)
|
|
|
+ {
|
|
|
+ t -= 0.8181818181818182f;
|
|
|
+ t = 7.5625f * t * t + 0.9375f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 0.9545454545454546f;
|
|
|
+ t = 7.5625f * t * t + 0.984375f;
|
|
|
+ }
|
|
|
+
|
|
|
+ t = 1.0f - t;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case BOUNCE_OUT:
|
|
|
+ {
|
|
|
+ if (t < 0.36363636363636365f)
|
|
|
+ {
|
|
|
+ t = 7.5625f * t * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.7272727272727273f)
|
|
|
+ {
|
|
|
+ t -= 0.5454545454545454f;
|
|
|
+ t = 7.5625f * t * t + 0.75f;
|
|
|
+ }
|
|
|
+ else if (t < 0.9090909090909091f)
|
|
|
+ {
|
|
|
+ t -= 0.8181818181818182f;
|
|
|
+ t = 7.5625f * t * t + 0.9375f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 0.9545454545454546f;
|
|
|
+ t = 7.5625f * t * t + 0.984375f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case BOUNCE_IN_OUT:
|
|
|
+ {
|
|
|
+ if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = 1.0f - t * 2.0f;
|
|
|
+
|
|
|
+ if (t < 0.36363636363636365f)
|
|
|
+ {
|
|
|
+ t = 7.5625f * t * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.7272727272727273f)
|
|
|
+ {
|
|
|
+ t -= 0.5454545454545454f;
|
|
|
+ t = 7.5625f * t * t + 0.75f;
|
|
|
+ }
|
|
|
+ else if (t < 0.9090909090909091f)
|
|
|
+ {
|
|
|
+ t -= 0.8181818181818182f;
|
|
|
+ t = 7.5625f * t * t + 0.9375f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 0.9545454545454546f;
|
|
|
+ t = 7.5625f * t * t + 0.984375f;
|
|
|
+ }
|
|
|
+
|
|
|
+ t = (1.0f - t) * 0.5f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = t * 2.0f - 1.0f;
|
|
|
+ if (t < 0.36363636363636365f)
|
|
|
+ {
|
|
|
+ t = 7.5625f * t * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.7272727272727273f)
|
|
|
+ {
|
|
|
+ t -= 0.5454545454545454f;
|
|
|
+ t = 7.5625f * t * t + 0.75f;
|
|
|
+ }
|
|
|
+ else if (t < 0.9090909090909091f)
|
|
|
+ {
|
|
|
+ t -= 0.8181818181818182f;
|
|
|
+ t = 7.5625f * t * t + 0.9375f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t -= 0.9545454545454546f;
|
|
|
+ t = 7.5625f * t * t + 0.984375f;
|
|
|
+ }
|
|
|
+
|
|
|
+ t = 0.5f * t + 0.5f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case BOUNCE_OUT_IN:
|
|
|
+ {
|
|
|
+ if (t < 0.1818181818f)
|
|
|
+ {
|
|
|
+ t = 15.125f * t * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.3636363636f)
|
|
|
+ {
|
|
|
+ t = 1.5f + (-8.250000001f + 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.4545454546f)
|
|
|
+ {
|
|
|
+ t = 3.0f + (-12.375f + 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else if (t < 0.5f)
|
|
|
+ {
|
|
|
+ t = 3.9375f + (-14.4375f + 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else if (t <= 0.5454545455f)
|
|
|
+ {
|
|
|
+ t = -3.625000004f + (15.81250001f - 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else if (t <= 0.6363636365f)
|
|
|
+ {
|
|
|
+ t = -4.75f + (17.875f - 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else if (t <= 0.8181818180f)
|
|
|
+ {
|
|
|
+ t = -7.374999995f + (21.99999999f - 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t = -14.125f + (30.25f - 15.125f * t) * t;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ interpolateLinear(t, from, to, dst);
|
|
|
+}
|
|
|
+
|
|
|
+float Curve::lerp(float t, float from, float to)
|
|
|
+{
|
|
|
+ return lerpInl(t, from, to);
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::setQuaternionOffset(unsigned int offset)
|
|
|
+{
|
|
|
+ assert(offset <= (_componentCount - 4));
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ _quaternionOffset = new unsigned int[1];
|
|
|
+
|
|
|
+ *_quaternionOffset = offset;
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateBezier(float s, Point* from, Point* to, float* dst) const
|
|
|
+{
|
|
|
+ float s_2 = s * s;
|
|
|
+ float eq0 = 1 - s;
|
|
|
+ float eq0_2 = eq0 * eq0;
|
|
|
+ float eq1 = eq0_2 * eq0;
|
|
|
+ float eq2 = 3 * s * eq0_2;
|
|
|
+ float eq3 = 3 * s_2 * eq0;
|
|
|
+ float eq4 = s_2 * s;
|
|
|
+
|
|
|
+ float* fromValue = from->value;
|
|
|
+ float* toValue = to->value;
|
|
|
+ float* outValue = from->outValue;
|
|
|
+ float* inValue = to->inValue;
|
|
|
+
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ float interpTime = bezier(eq1, eq2, eq3, eq4, from->time, outValue[i], to->time, inValue[i]);
|
|
|
+ interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
+
|
|
|
+ // Handle remaining components (if any) as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = bezier(eq1, eq2, eq3, eq4, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateBSpline(float s, Point* c0, Point* c1, Point* c2, Point* c3, float* dst) const
|
|
|
+{
|
|
|
+ float s_2 = s * s;
|
|
|
+ float s_3 = s_2 * s;
|
|
|
+ float eq0 = (-s_3 + 3 * s_2 - 3 * s + 1) / 6.0f;
|
|
|
+ float eq1 = (3 * s_3 - 6 * s_2 + 4) / 6.0f;
|
|
|
+ float eq2 = (-3 * s_3 + 3 * s_2 + 3 * s + 1) / 6.0f;
|
|
|
+ float eq3 = s_3 / 6.0f;
|
|
|
+
|
|
|
+ float* c0Value = c0->value;
|
|
|
+ float* c1Value = c1->value;
|
|
|
+ float* c2Value = c2->value;
|
|
|
+ float* c3Value = c3->value;
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (c1Value[i] == c2Value[i])
|
|
|
+ dst[i] = c1Value[i];
|
|
|
+ else
|
|
|
+ dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (c1Value[i] == c2Value[i])
|
|
|
+ dst[i] = c1Value[i];
|
|
|
+ else
|
|
|
+ dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ float interpTime;
|
|
|
+ if (c0->time == c1->time)
|
|
|
+ interpTime = bspline(eq0, eq1, eq2, eq3, -c0->time, c1->time, c2->time, c3->time);
|
|
|
+ else if (c2->time == c3->time)
|
|
|
+ interpTime = bspline(eq0, eq1, eq2, eq3, c0->time, c1->time, c2->time, -c3->time);
|
|
|
+ else
|
|
|
+ interpTime = bspline(eq0, eq1, eq2, eq3, c0->time, c1->time, c2->time, c3->time);
|
|
|
+ interpolateQuaternion(s, (c1Value + i) , (c2Value + i), (dst + i));
|
|
|
+
|
|
|
+ // Handle remaining components (if any) as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (c1Value[i] == c2Value[i])
|
|
|
+ dst[i] = c1Value[i];
|
|
|
+ else
|
|
|
+ dst[i] = bspline(eq0, eq1, eq2, eq3, c0Value[i], c1Value[i], c2Value[i], c3Value[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateHermite(float s, Point* from, Point* to, float* dst) const
|
|
|
+{
|
|
|
+ // Calculate the hermite basis functions.
|
|
|
+ float s_2 = s * s; // t^2
|
|
|
+ float s_3 = s_2 * s; // t^3
|
|
|
+ float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
+ float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
+ float h10 = s_3 - 2 * s_2 + s; // basis function 2
|
|
|
+ float h11 = s_3 - s_2; // basis function 3
|
|
|
+
|
|
|
+ float* fromValue = from->value;
|
|
|
+ float* toValue = to->value;
|
|
|
+ float* outValue = from->outValue;
|
|
|
+ float* inValue = to->inValue;
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ float interpTime = hermite(h00, h01, h10, h11, from->time, outValue[i], to->time, inValue[i]);
|
|
|
+ interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
+
|
|
|
+ // Handle remaining components (if any) as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermite(h00, h01, h10, h11, fromValue[i], outValue[i], toValue[i], inValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateHermiteFlat(float s, Point* from, Point* to, float* dst) const
|
|
|
+{
|
|
|
+ // Calculate the hermite basis functions.
|
|
|
+ float s_2 = s * s; // t^2
|
|
|
+ float s_3 = s_2 * s; // t^3
|
|
|
+ float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
+ float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
+
|
|
|
+ float* fromValue = from->value;
|
|
|
+ float* toValue = to->value;
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ float interpTime = hermiteFlat(h00, h01, from->time, to->time);
|
|
|
+ interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
+
|
|
|
+ // Handle remaining components (if any) as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = hermiteFlat(h00, h01, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateHermiteSmooth(float s, unsigned int index, Point* from, Point* to, float* dst) const
|
|
|
+{
|
|
|
+ // Calculate the hermite basis functions.
|
|
|
+ float s_2 = s * s; // t^2
|
|
|
+ float s_3 = s_2 * s; // t^3
|
|
|
+ float h00 = 2 * s_3 - 3 * s_2 + 1; // basis function 0
|
|
|
+ float h01 = -2 * s_3 + 3 * s_2; // basis function 1
|
|
|
+ float h10 = s_3 - 2 * s_2 + s; // basis function 2
|
|
|
+ float h11 = s_3 - s_2; // basis function 3
|
|
|
+
|
|
|
+ float inValue;
|
|
|
+ float outValue;
|
|
|
+
|
|
|
+ float* fromValue = from->value;
|
|
|
+ float* toValue = to->value;
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ {
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if (index == 0)
|
|
|
+ {
|
|
|
+ outValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index == _pointCount - 2)
|
|
|
+ {
|
|
|
+ inValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ {
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if (index == 0)
|
|
|
+ {
|
|
|
+ outValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index == _pointCount - 2)
|
|
|
+ {
|
|
|
+ inValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ if (index == 0)
|
|
|
+ {
|
|
|
+ outValue = to->time - from->time;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ outValue = (to->time - (from - 1)->time) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index == _pointCount - 2)
|
|
|
+ {
|
|
|
+ inValue = to->time - from->time;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ inValue = ((to + 1)->time - from->time) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ float interpTime = hermiteSmooth(h00, h01, h10, h11, from->time, outValue, to->time, inValue);
|
|
|
+ interpolateQuaternion(interpTime, (fromValue + i), (toValue + i), (dst + i));
|
|
|
+
|
|
|
+ // Handle remaining components (if any) as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ {
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate as scalar.
|
|
|
+ if (index == 0)
|
|
|
+ {
|
|
|
+ outValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ outValue = (toValue[i] - (from - 1)->value[i]) * ((from->time - (from - 1)->time) / (to->time - (from - 1)->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index == _pointCount - 2)
|
|
|
+ {
|
|
|
+ inValue = toValue[i] - fromValue[i];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ inValue = ((to + 1)->value[i] - fromValue[i]) * ((to->time - from->time) / ((to + 1)->time - from->time));
|
|
|
+ }
|
|
|
+
|
|
|
+ dst[i] = hermiteSmooth(h00, h01, h10, h11, fromValue[i], outValue, toValue[i], inValue);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateLinear(float s, Point* from, Point* to, float* dst) const
|
|
|
+{
|
|
|
+ float* fromValue = from->value;
|
|
|
+ float* toValue = to->value;
|
|
|
+
|
|
|
+ if (!_quaternionOffset)
|
|
|
+ {
|
|
|
+ for (unsigned int i = 0; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Interpolate any values up to the quaternion offset as scalars.
|
|
|
+ unsigned int quaternionOffset = *_quaternionOffset;
|
|
|
+ unsigned int i = 0;
|
|
|
+ for (i = 0; i < quaternionOffset; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle quaternion component.
|
|
|
+ interpolateQuaternion(s, (fromValue + i), (toValue + i), (dst + i));
|
|
|
+
|
|
|
+ // handle any remaining components as scalars
|
|
|
+ for (i += 4; i < _componentCount; i++)
|
|
|
+ {
|
|
|
+ if (fromValue[i] == toValue[i])
|
|
|
+ dst[i] = fromValue[i];
|
|
|
+ else
|
|
|
+ dst[i] = lerpInl(s, fromValue[i], toValue[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Curve::interpolateQuaternion(float s, float* from, float* to, float* dst) const
|
|
|
+{
|
|
|
+ // Evaluate.
|
|
|
+ if (s >= 0)
|
|
|
+ {
|
|
|
+ Quaternion::slerp(from[0], from[1], from[2], from[3], to[0], to[1], to[2], to[3], s, dst, dst + 1, dst + 2, dst + 3);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ Quaternion::slerp(to[0], to[1], to[2], to[3], from[0], from[1], from[2], from[3], s, dst, dst + 1, dst + 2, dst + 3);
|
|
|
+
|
|
|
+ //((Quaternion*) dst)->normalize();
|
|
|
+}
|
|
|
+
|
|
|
+int Curve::determineIndex(float time) const
|
|
|
+{
|
|
|
+ unsigned int min = 0;
|
|
|
+ unsigned int max = _pointCount - 1;
|
|
|
+ unsigned int mid = 0;
|
|
|
+
|
|
|
+ // Do a binary search to determine the index.
|
|
|
+ do
|
|
|
+ {
|
|
|
+ mid = (min + max) >> 1;
|
|
|
+
|
|
|
+ if (time >= _points[mid].time && time <= _points[mid + 1].time)
|
|
|
+ return mid;
|
|
|
+ else if (time < _points[mid].time)
|
|
|
+ max = mid - 1;
|
|
|
+ else
|
|
|
+ min = mid + 1;
|
|
|
+ } while (min <= max);
|
|
|
+
|
|
|
+ // We should never hit this!
|
|
|
+ return -1;
|
|
|
+}
|
|
|
+
|
|
|
+int Curve::getInterpolationType(const char* curveId)
|
|
|
+{
|
|
|
+ if (strcmp(curveId, "BEZIER") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BEZIER;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "BSPLINE") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BSPLINE;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "FLAT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::FLAT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "HERMITE") == 0)
|
|
|
+ {
|
|
|
+ return Curve::HERMITE;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "LINEAR") == 0)
|
|
|
+ {
|
|
|
+ return Curve::LINEAR;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "SMOOTH") == 0)
|
|
|
+ {
|
|
|
+ return Curve::SMOOTH;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "STEP") == 0)
|
|
|
+ {
|
|
|
+ return Curve::STEP;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUADRATIC_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUADRATIC_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUADRATIC_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUADRATIC_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUADRATIC_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUADRATIC_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUADRATIC_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUADRATIC_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CUBIC_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CUBIC_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CUBIC_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CUBIC_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CUBIC_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CUBIC_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CUBIC_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CUBIC_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUARTIC_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUARTIC_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUARTIC_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUARTIC_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUARTIC_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUARTIC_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUARTIC_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUARTIC_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUINTIC_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUINTIC_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUINTIC_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUINTIC_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUINTIC_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUINTIC_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "QUINTIC_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::QUINTIC_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "SINE_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::SINE_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "SINE_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::SINE_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "SINE_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::SINE_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "SINE_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::SINE_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "EXPONENTIAL_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::EXPONENTIAL_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "EXPONENTIAL_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::EXPONENTIAL_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "EXPONENTIAL_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::EXPONENTIAL_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "EXPONENTIAL_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::EXPONENTIAL_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CIRCULAR_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CIRCULAR_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CIRCULAR_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CIRCULAR_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CIRCULAR_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CIRCULAR_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "CIRCULAR_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::CIRCULAR_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "ELASTIC_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::ELASTIC_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "ELASTIC_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::ELASTIC_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "ELASTIC_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::ELASTIC_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "ELASTIC_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::ELASTIC_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "OVERSHOOT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::OVERSHOOT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "OVERSHOOT_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::OVERSHOOT_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "OVERSHOOT_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::OVERSHOOT_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "OVERSHOOT_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::OVERSHOOT_OUT_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "BOUNCE_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BOUNCE_IN;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "BOUNCE_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BOUNCE_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "BOUNCE_IN_OUT") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BOUNCE_IN_OUT;
|
|
|
+ }
|
|
|
+ else if (strcmp(curveId, "BOUNCE_OUT_IN") == 0)
|
|
|
+ {
|
|
|
+ return Curve::BOUNCE_OUT_IN;
|
|
|
+ }
|
|
|
+
|
|
|
+ return -1;
|
|
|
+}
|
|
|
+
|
|
|
+}
|