#include "Base.h" #include "PhysicsCollisionObject.h" #include "PhysicsController.h" #include "Game.h" #include "Node.h" #include "ScriptListener.h" namespace gameplay { /** * Internal class used to implement the collidesWith(PhysicsCollisionObject*) function. * @script{ignore} */ struct CollidesWithCallback : public btCollisionWorld::ContactResultCallback { /** * Called with each contact. Needed to implement collidesWith(PhysicsCollisionObject*). */ btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObject* a, int partIdA, int indexA, const btCollisionObject* b, int partIdB, int indexB) { result = true; return 0.0f; } /** * The result of the callback. */ bool result; }; PhysicsCollisionObject::PhysicsCollisionObject(Node* node) : _node(node), _motionState(NULL), _collisionShape(NULL), _enabled(true), _scriptListeners(NULL) { } PhysicsCollisionObject::~PhysicsCollisionObject() { SAFE_DELETE(_motionState); if (_scriptListeners) { for (unsigned int i = 0; i < _scriptListeners->size(); i++) { SAFE_DELETE((*_scriptListeners)[i]); } SAFE_DELETE(_scriptListeners); } GP_ASSERT(Game::getInstance()->getPhysicsController()); Game::getInstance()->getPhysicsController()->destroyShape(_collisionShape); } PhysicsCollisionShape::Type PhysicsCollisionObject::getShapeType() const { GP_ASSERT(getCollisionShape()); return getCollisionShape()->getType(); } Node* PhysicsCollisionObject::getNode() const { return _node; } PhysicsCollisionShape* PhysicsCollisionObject::getCollisionShape() const { return _collisionShape; } bool PhysicsCollisionObject::isKinematic() const { switch (getType()) { case GHOST_OBJECT: case CHARACTER: return true; default: GP_ASSERT(getCollisionObject()); return getCollisionObject()->isKinematicObject(); } } bool PhysicsCollisionObject::isDynamic() const { GP_ASSERT(getCollisionObject()); return !getCollisionObject()->isStaticOrKinematicObject(); } bool PhysicsCollisionObject::isEnabled() const { return _enabled; } void PhysicsCollisionObject::setEnabled(bool enable) { if (enable) { if (!_enabled) { Game::getInstance()->getPhysicsController()->addCollisionObject(this); _motionState->updateTransformFromNode(); _enabled = true; } } else { if (_enabled) { Game::getInstance()->getPhysicsController()->removeCollisionObject(this, false); _enabled = false; } } } void PhysicsCollisionObject::addCollisionListener(CollisionListener* listener, PhysicsCollisionObject* object) { GP_ASSERT(Game::getInstance()->getPhysicsController()); Game::getInstance()->getPhysicsController()->addCollisionListener(listener, this, object); } void PhysicsCollisionObject::removeCollisionListener(CollisionListener* listener, PhysicsCollisionObject* object) { GP_ASSERT(Game::getInstance()->getPhysicsController()); Game::getInstance()->getPhysicsController()->removeCollisionListener(listener, this, object); } void PhysicsCollisionObject::addCollisionListener(const char* function, PhysicsCollisionObject* object) { if (!_scriptListeners) _scriptListeners = new std::vector(); ScriptListener* listener = new ScriptListener(function); _scriptListeners->push_back(listener); addCollisionListener(listener, object); } void PhysicsCollisionObject::removeCollisionListener(const char* function, PhysicsCollisionObject* object) { if (!_scriptListeners) return; std::string functionStr = function; for (unsigned int i = 0; i < _scriptListeners->size(); i++) { if ((*_scriptListeners)[i]->_function == functionStr) { removeCollisionListener((*_scriptListeners)[i], object); SAFE_DELETE((*_scriptListeners)[i]); _scriptListeners->erase(_scriptListeners->begin() + i); return; } } } bool PhysicsCollisionObject::collidesWith(PhysicsCollisionObject* object) const { GP_ASSERT(Game::getInstance()->getPhysicsController() && Game::getInstance()->getPhysicsController()->_world); GP_ASSERT(object && object->getCollisionObject()); GP_ASSERT(getCollisionObject()); static CollidesWithCallback callback; callback.result = false; Game::getInstance()->getPhysicsController()->_world->contactPairTest(getCollisionObject(), object->getCollisionObject(), callback); return callback.result; } PhysicsCollisionObject::CollisionPair::CollisionPair(PhysicsCollisionObject* objectA, PhysicsCollisionObject* objectB) : objectA(objectA), objectB(objectB) { // unused } bool PhysicsCollisionObject::CollisionPair::operator < (const CollisionPair& collisionPair) const { // If the pairs are equal, then return false. if ((objectA == collisionPair.objectA && objectB == collisionPair.objectB) || (objectA == collisionPair.objectB && objectB == collisionPair.objectA)) return false; // We choose to compare based on objectA arbitrarily. if (objectA < collisionPair.objectA) return true; if (objectA == collisionPair.objectA) return objectB < collisionPair.objectB; return false; } PhysicsCollisionObject::PhysicsMotionState::PhysicsMotionState(Node* node, const Vector3* centerOfMassOffset) : _node(node), _centerOfMassOffset(btTransform::getIdentity()) { if (centerOfMassOffset) { // Store the center of mass offset. _centerOfMassOffset.setOrigin(BV(*centerOfMassOffset)); } updateTransformFromNode(); } PhysicsCollisionObject::PhysicsMotionState::~PhysicsMotionState() { } void PhysicsCollisionObject::PhysicsMotionState::getWorldTransform(btTransform &transform) const { GP_ASSERT(_node); if (_node->getCollisionObject() && _node->getCollisionObject()->isKinematic()) updateTransformFromNode(); transform = _centerOfMassOffset.inverse() * _worldTransform; } void PhysicsCollisionObject::PhysicsMotionState::setWorldTransform(const btTransform &transform) { GP_ASSERT(_node); _worldTransform = transform * _centerOfMassOffset; const btQuaternion& rot = _worldTransform.getRotation(); const btVector3& pos = _worldTransform.getOrigin(); _node->setRotation(rot.x(), rot.y(), rot.z(), rot.w()); _node->setTranslation(pos.x(), pos.y(), pos.z()); } void PhysicsCollisionObject::PhysicsMotionState::updateTransformFromNode() const { GP_ASSERT(_node); // Store the initial world transform (minus the scale) for use by Bullet later on. Quaternion rotation; const Matrix& m = _node->getWorldMatrix(); m.getRotation(&rotation); if (!_centerOfMassOffset.getOrigin().isZero()) { // When there is a center of mass offset, we modify the initial world transformation // so that when physics is initially applied, the object is in the correct location. btTransform offset = btTransform(BQ(rotation), btVector3(0.0f, 0.0f, 0.0f)) * _centerOfMassOffset.inverse(); btVector3 origin(m.m[12] + _centerOfMassOffset.getOrigin().getX() + offset.getOrigin().getX(), m.m[13] + _centerOfMassOffset.getOrigin().getY() + offset.getOrigin().getY(), m.m[14] + _centerOfMassOffset.getOrigin().getZ() + offset.getOrigin().getZ()); _worldTransform = btTransform(BQ(rotation), origin); } else { _worldTransform = btTransform(BQ(rotation), btVector3(m.m[12], m.m[13], m.m[14])); } } }