#include "Base.h" #include "Mesh.h" #include "Model.h" namespace gameplay { Mesh::Mesh(void) : model(NULL) { } Mesh::~Mesh(void) { } unsigned int Mesh::getTypeId(void) const { return MESH_ID; } const char* Mesh::getElementName(void) const { return "Mesh"; } void Mesh::writeBinary(FILE* file) { Object::writeBinary(file); // vertex formats write(_vertexFormat.size(), file); for (std::vector::iterator i = _vertexFormat.begin(); i != _vertexFormat.end(); i++) { i->writeBinary(file); } // vertices writeBinaryVertices(file); // parts writeBinaryObjects(parts, file); } ///////////////////////////////////////////////////////////// // // Fast, Minimum Storage Ray-Triangle Intersection // // Authors: Tomas Möller, Ben Trumbore // http://jgt.akpeters.com/papers/MollerTrumbore97 // // Implementation of algorithm from Real-Time Rendering (vol 1), pg. 305. // // Adapted slightly for use here. // #define EPSILON 0.000001 #define CROSS(dest,v1,v2) \ dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ dest[2]=v1[0]*v2[1]-v1[1]*v2[0]; #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) #define SUB(dest,v1,v2) \ dest[0]=v1[0]-v2[0]; \ dest[1]=v1[1]-v2[1]; \ dest[2]=v1[2]-v2[2]; int intersect_triangle(const float orig[3], const float dir[3], const float vert0[3], const float vert1[3], const float vert2[3], float *t, float *u, float *v) { float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; float det,inv_det; /* find vectors for two edges sharing vert0 */ SUB(edge1, vert1, vert0); SUB(edge2, vert2, vert0); /* begin calculating determinant - also used to calculate U parameter */ CROSS(pvec, dir, edge2); /* if determinant is near zero, ray lies in plane of triangle */ det = DOT(edge1, pvec); if (det > -EPSILON && det < EPSILON) return 0; inv_det = 1.0f / det; /* calculate distance from vert0 to ray origin */ SUB(tvec, orig, vert0); /* calculate U parameter and test bounds */ *u = DOT(tvec, pvec) * inv_det; if (*u < 0.0 || *u > 1.0) return 0; /* prepare to test V parameter */ CROSS(qvec, tvec, edge1); /* calculate V parameter and test bounds */ *v = DOT(dir, qvec) * inv_det; if (*v < 0.0 || *u + *v > 1.0) return 0; /* calculate t, ray intersects triangle */ *t = DOT(edge2, qvec) * inv_det; return 1; } // Performs an intersection test between a ray and the given mesh part // and stores the result in "point". bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const std::vector& vertices, const std::vector& parts, Vector3* point) { const float* orig = &rayOrigin.x; const float* dir = &rayDirection.x; for (unsigned int i = 0, partCount = parts.size(); i < partCount; ++i) { MeshPart* part = parts[i]; for (unsigned int j = 0, indexCount = part->getIndicesCount(); j < indexCount; j += 3) { const float* v0 = &vertices[part->getIndex( j )].position.x; const float* v1 = &vertices[part->getIndex(j+1)].position.x; const float* v2 = &vertices[part->getIndex(j+2)].position.x; float t, u, v; if (intersect_triangle(orig, dir, v0, v1, v2, &t, &u, &v)) { // Found an intersection! if (point) { Vector3 rd(rayDirection); rd.scale(t); Vector3::add(rayOrigin, rd, point); } return true; } } } return false; } void Mesh::generateHeightmap(const char* filename) { // Shoot rays down from a point just above the max Y position of the mesh. // Compute ray-triangle intersection tests against the ray and this mesh to // generate heightmap data. Vector3 rayOrigin(0, bounds.max.y + 10, 0); Vector3 rayDirection(0, -1, 0); Vector3 intersectionPoint; int minX = (int)ceil(bounds.min.x); int maxX = (int)floor(bounds.max.x); int minZ = (int)ceil(bounds.min.z); int maxZ = (int)floor(bounds.max.z); int width = maxX - minX + 1; int height = maxZ - minZ + 1; float* heights = new float[width * height]; int index = 0; float minHeight = FLT_MAX; float maxHeight = -FLT_MAX; for (int z = minZ; z <= maxZ; z++) { rayOrigin.z = (float)z; for (int x = minX; x <= maxX; x++) { float h; rayOrigin.x = (float)x; if (intersect(rayOrigin, rayDirection, vertices, parts, &intersectionPoint)) { h = intersectionPoint.y; } else { h = 0; fprintf(stderr, "Warning: Heightmap triangle intersection failed for (%d, %d).\n", x, z); } if (h < minHeight) minHeight = h; if (h > maxHeight) maxHeight = h; heights[index++] = h; } } // Normalize the max height value maxHeight = maxHeight - minHeight; png_structp png_ptr = NULL; png_infop info_ptr = NULL; png_bytep row = NULL; FILE* fp = fopen(filename, "wb"); if (fp == NULL) { fprintf(stderr, "Error: Failed to open file for writing: %s\n", filename); goto error; } png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (png_ptr == NULL) { fprintf(stderr, "Error: Write struct creation failed: %s\n", filename); goto error; } info_ptr = png_create_info_struct(png_ptr); if (info_ptr == NULL) { fprintf(stderr, "Error: Info struct creation failed: %s\n", filename); goto error; } png_init_io(png_ptr, fp); png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); png_write_info(png_ptr, info_ptr); // Allocate memory for a single row of image data row = (png_bytep)malloc(3 * width * sizeof(png_byte)); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { // Write height value normalized between 0-255 (between min and max height) float h = heights[y*width + x]; float nh = (h - minHeight) / maxHeight; png_byte b = (png_byte)(nh * 255.0f); int pos = x*3; row[pos] = row[pos+1] = row[pos+2] = b; } png_write_row(png_ptr, row); } png_write_end(png_ptr, NULL); DEBUGPRINT_VARG("> Saved heightmap: %s\n", filename); error: if (heights) delete[] heights; if (fp) fclose(fp); if (row) free(row); if (info_ptr) png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); if (png_ptr) png_destroy_write_struct(&png_ptr, (png_infopp)NULL); } void Mesh::writeBinaryVertices(FILE* file) { if (vertices.size() > 0) { // Assumes that all vertices are the same size. // Write the number of bytes for the vertex data const Vertex& vertex = vertices.front(); write(vertices.size() * vertex.byteSize(), file); // (vertex count) * (vertex size) // for each vertex for (std::vector::const_iterator i = vertices.begin(); i != vertices.end(); ++i) { // Write this vertex i->writeBinary(file); } } else { // No vertex data write((unsigned int)0, file); } // Write bounds write(&bounds.min.x, 3, file); write(&bounds.max.x, 3, file); write(&bounds.center.x, 3, file); write(bounds.radius, file); } void Mesh::writeText(FILE* file) { fprintElementStart(file); // for each VertexFormat if (vertices.size() > 0 ) { for (std::vector::iterator i = _vertexFormat.begin(); i != _vertexFormat.end(); i++) { i->writeText(file); } } // for each Vertex fprintf(file, "\n", vertices.size()); for (std::vector::iterator i = vertices.begin(); i != vertices.end(); ++i) { i->writeText(file); } fprintf(file, "\n"); // write bounds fprintf(file, "\n"); fprintf(file, "\n"); writeVectorText(bounds.min, file); fprintf(file, "\n"); fprintf(file, "\n"); writeVectorText(bounds.max, file); fprintf(file, "\n"); fprintf(file, "
\n"); writeVectorText(bounds.center, file); fprintf(file, "
\n"); fprintf(file, "%f\n", bounds.radius); fprintf(file, "
\n"); // for each MeshPart for (std::vector::iterator i = parts.begin(); i != parts.end(); ++i) { (*i)->writeText(file); } fprintElementEnd(file); } void Mesh::addMeshPart(MeshPart* part) { parts.push_back(part); } void Mesh::addMeshPart(Vertex* vertex) { vertices.push_back(*vertex); } void Mesh::addVetexAttribute(unsigned int usage, unsigned int count) { _vertexFormat.push_back(VertexElement(usage, count)); } size_t Mesh::getVertexCount() const { return vertices.size(); } const Vertex& Mesh::getVertex(unsigned int index) const { return vertices[index]; } size_t Mesh::getVertexElementCount() const { return _vertexFormat.size(); } const VertexElement& Mesh::getVertexElement(unsigned int index) const { return _vertexFormat[index]; } bool Mesh::contains(const Vertex& vertex) const { return vertexLookupTable.count(vertex) > 0; } unsigned int Mesh::addVertex(const Vertex& vertex) { unsigned int index = getVertexCount(); vertices.push_back(vertex); vertexLookupTable[vertex] = index; return index; } unsigned int Mesh::getVertexIndex(const Vertex& vertex) { std::map::iterator it; it = vertexLookupTable.find(vertex); return it->second; } void Mesh::computeBounds() { // If we have a Model with a MeshSkin associated with it, // compute the bounds from the skin - otherwise compute // it from the local mesh data. if (model && model->getSkin()) { model->getSkin()->computeBounds(); return; } bounds.min.x = bounds.min.y = bounds.min.z = FLT_MAX; bounds.max.x = bounds.max.y = bounds.max.z = -FLT_MAX; bounds.center.x = bounds.center.y = bounds.center.z = 0.0f; bounds.radius = 0.0f; for (std::vector::const_iterator i = vertices.begin(); i != vertices.end(); ++i) { // Update min/max for this vertex if (i->position.x < bounds.min.x) bounds.min.x = i->position.x; if (i->position.y < bounds.min.y) bounds.min.y = i->position.y; if (i->position.z < bounds.min.z) bounds.min.z = i->position.z; if (i->position.x > bounds.max.x) bounds.max.x = i->position.x; if (i->position.y > bounds.max.y) bounds.max.y = i->position.y; if (i->position.z > bounds.max.z) bounds.max.z = i->position.z; } // Compute center point Vector3::add(bounds.min, bounds.max, &bounds.center); bounds.center.scale(0.5f); // Compute radius by looping through all points again and finding the max // distance between the center point and each vertex position for (std::vector::const_iterator i = vertices.begin(); i != vertices.end(); ++i) { float d = bounds.center.distanceSquared(i->position); if (d > bounds.radius) { bounds.radius = d; } } // Convert squared distance to distance for radius bounds.radius = sqrt(bounds.radius); } }