#include "Base.h" #include "Plane.h" #include "Frustum.h" #include "Ray.h" #include "BoundingSphere.h" #include "BoundingBox.h" namespace gameplay { Plane::Plane() { } Plane::Plane(const Vector3& normal, float distance) { set(normal, distance); } Plane::Plane(const Plane& copy) { set(copy); } Plane::~Plane() { } const Vector3& Plane::getNormal() const { return _normal; } void Plane::setNormal(const Vector3& normal) { _normal = normal; normalize(); } float Plane::getDistance() const { return _distance; } void Plane::setDistance(float distance) { _distance = distance; } float Plane::distance(const Vector3& point) const { return _normal.x * point.x + _normal.y * point.y + _normal.z * point.z + _distance; } void Plane::intersection(const Plane& p1, const Plane& p2, const Plane& p3, Vector3* point) { GP_ASSERT(point); // The planes' normals must be all normalized (which we guarantee in the Plane class). // Calculate the determinant of the matrix (i.e | n1 n2 n3 |). float det = p1._normal.x * (p2._normal.y * p3._normal.z - p2._normal.z * p3._normal.y) - p2._normal.x *(p1._normal.y * p3._normal.z - p1._normal.z * p3._normal.y) + p3._normal.x * (p1._normal.y * p2._normal.z - p1._normal.z * p2._normal.y); // If the determinant is zero, then the planes do not all intersect. if (fabs(det) <= MATH_EPSILON) return; // Create 3 points, one on each plane. // (We just pick the point on the plane directly along its normal from the origin). float p1x = -p1._normal.x * p1._distance; float p1y = -p1._normal.y * p1._distance; float p1z = -p1._normal.z * p1._distance; float p2x = -p2._normal.x * p2._distance; float p2y = -p2._normal.y * p2._distance; float p2z = -p2._normal.z * p2._distance; float p3x = -p3._normal.x * p3._distance; float p3y = -p3._normal.y * p3._distance; float p3z = -p3._normal.z * p3._distance; // Calculate the cross products of the normals. float c1x = (p2._normal.y * p3._normal.z) - (p2._normal.z * p3._normal.y); float c1y = (p2._normal.z * p3._normal.x) - (p2._normal.x * p3._normal.z); float c1z = (p2._normal.x * p3._normal.y) - (p2._normal.y * p3._normal.x); float c2x = (p3._normal.y * p1._normal.z) - (p3._normal.z * p1._normal.y); float c2y = (p3._normal.z * p1._normal.x) - (p3._normal.x * p1._normal.z); float c2z = (p3._normal.x * p1._normal.y) - (p3._normal.y * p1._normal.x); float c3x = (p1._normal.y * p2._normal.z) - (p1._normal.z * p2._normal.y); float c3y = (p1._normal.z * p2._normal.x) - (p1._normal.x * p2._normal.z); float c3z = (p1._normal.x * p2._normal.y) - (p1._normal.y * p2._normal.x); // Calculate the point of intersection using the formula: // x = (| n1 n2 n3 |)^-1 * [(x1 * n1)(n2 x n3) + (x2 * n2)(n3 x n1) + (x3 * n3)(n1 x n2)] float s1 = p1x * p1._normal.x + p1y * p1._normal.y + p1z * p1._normal.z; float s2 = p2x * p2._normal.x + p2y * p2._normal.y + p2z * p2._normal.z; float s3 = p3x * p3._normal.x + p3y * p3._normal.y + p3z * p3._normal.z; float detI = 1.0f / det; point->x = (s1 * c1x + s2 * c2x + s3 * c3x) * detI; point->y = (s1 * c1y + s2 * c2y + s3 * c3y) * detI; point->z = (s1 * c1z + s2 * c2z + s3 * c3z) * detI; } float Plane::intersects(const BoundingSphere& sphere) const { return sphere.intersects(*this); } float Plane::intersects(const BoundingBox& box) const { return box.intersects(*this); } float Plane::intersects(const Frustum& frustum) const { // Get the corners of the frustum. Vector3 corners[8]; frustum.getCorners(corners); // Calculate the distances from all of the corners to the plane. // If all of the distances are positive, then the frustum is in the // positive half-space of this plane; if all the distances are negative, // then the frustum is in the negative half-space of this plane; if some of // the distances are positive and some are negative, the frustum intersects. float d = distance(corners[0]); if (d > 0.0f) { if (distance(corners[1]) <= 0.0f || distance(corners[2]) <= 0.0f || distance(corners[3]) <= 0.0f || distance(corners[4]) <= 0.0f || distance(corners[5]) <= 0.0f || distance(corners[6]) <= 0.0f || distance(corners[7]) <= 0.0f) { return Plane::INTERSECTS_INTERSECTING; } return Plane::INTERSECTS_FRONT; } else if (d < 0.0f) { if (distance(corners[1]) >= 0.0f || distance(corners[2]) >= 0.0f || distance(corners[3]) >= 0.0f || distance(corners[4]) >= 0.0f || distance(corners[5]) >= 0.0f || distance(corners[6]) >= 0.0f || distance(corners[7]) >= 0.0f) { return Plane::INTERSECTS_INTERSECTING; } return Plane::INTERSECTS_BACK; } else { return Plane::INTERSECTS_INTERSECTING; } } float Plane::intersects(const Plane& plane) const { // Check if the planes intersect. if ((_normal.x == plane._normal.x && _normal.y == plane._normal.y && _normal.z == plane._normal.z) || !isParallel(plane)) { return Plane::INTERSECTS_INTERSECTING; } // Calculate the point where the given plane's normal vector intersects the given plane. Vector3 point(plane._normal.x * -plane._distance, plane._normal.y * -plane._distance, plane._normal.z * -plane._distance); // Calculate whether the given plane is in the positive or negative half-space of this plane // (corresponds directly to the sign of the distance from the point calculated above to this plane). if (distance(point) > 0.0f) { return Plane::INTERSECTS_FRONT; } else { return Plane::INTERSECTS_BACK; } } float Plane::intersects(const Ray& ray) const { // Calculate the distance from the ray's origin to the plane. float d = distance(ray.getOrigin()); // If the origin of the ray lies in the plane, then it intersects. if (d == 0.0f) { return Plane::INTERSECTS_INTERSECTING; } else { Vector3 rayDirection = ray.getDirection(); // If the dot product of this plane's normal and the ray's direction is positive, and // if the distance from this plane to the ray's origin is negative -> intersection, OR // if the dot product of this plane's normal and the ray's direction is negative, and // if the distance from this plane to the ray's origin is positive -> intersection. if (_normal.x * rayDirection.x + _normal.y * rayDirection.y + _normal.z * rayDirection.z > 0.0f) { if (d < 0.0f) { return Plane::INTERSECTS_INTERSECTING; } else { return Plane::INTERSECTS_FRONT; } } else { if (d > 0.0f) { return Plane::INTERSECTS_INTERSECTING; } else { return Plane::INTERSECTS_BACK; } } } } bool Plane::isParallel(const Plane& plane) const { return (_normal.y * plane._normal.z) - (_normal.z * plane._normal.y) == 0.0f && (_normal.z * plane._normal.x) - (_normal.x * plane._normal.z) == 0.0f && (_normal.x * plane._normal.y) - (_normal.y * plane._normal.x) == 0.0f; } void Plane::set(const Vector3& normal, float distance) { _normal = normal; _distance = distance; normalize(); } void Plane::set(const Plane& plane) { _normal = plane._normal; _distance = plane._distance; } void Plane::transform(const Matrix& matrix) { Matrix inverted; if (matrix.invert(&inverted)) { // Treat the plane as a four-tuple and multiply by the inverse transpose of the matrix to get the transformed plane. // Then we normalize the plane by dividing both the normal and the distance by the length of the normal. float nx = _normal.x * inverted.m[0] + _normal.y * inverted.m[1] + _normal.z * inverted.m[2] + _distance * inverted.m[3]; float ny = _normal.x * inverted.m[4] + _normal.y * inverted.m[5] + _normal.z * inverted.m[6] + _distance * inverted.m[7]; float nz = _normal.x * inverted.m[8] + _normal.y * inverted.m[9] + _normal.z * inverted.m[10] + _distance * inverted.m[11]; float d = _normal.x * inverted.m[12]+ _normal.y * inverted.m[13] + _normal.z * inverted.m[14] + _distance * inverted.m[15]; float divisor = sqrt(nx * nx + ny * ny + nz * nz); GP_ASSERT(divisor); float factor = 1.0f / divisor; _normal.x = nx * factor; _normal.y = ny * factor; _normal.z = nz * factor; _distance = d * factor; } } void Plane::normalize() { if (_normal.isZero()) return; // Normalize the plane's normal. float normalizeFactor = 1.0f / sqrt(_normal.x * _normal.x + _normal.y * _normal.y + _normal.z * _normal.z); if (normalizeFactor != 1.0f) { _normal.x *= normalizeFactor; _normal.y *= normalizeFactor; _normal.z *= normalizeFactor; _distance *= normalizeFactor; } } }