| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- #ifndef QUATERNION_H_
- #define QUATERNION_H_
- #include "Vector3.h"
- #include "Matrix.h"
- namespace gameplay
- {
- class Matrix;
- /**
- * Defines a 4-element quaternion that represents the orientation of an object in space.
- *
- * Quaternions are typically used as a replacement for euler angles and rotation matrices as a way to achieve smooth interpolation and avoid gimbal lock.
- *
- * Note that this quaternion class does not automatically keep the quaternion normalized. Therefore, care must be taken to normalize the quaternion when necessary, by calling the normalize method.
- * The package provides three methods for doing quaternion interpolation: lerp, slerp, and squad.
- *
- * lerp (linear interpolation): the interpolation curve gives a straight line in quaternion space. It is simple and fast to compute. The only problem is that it does not provide constant angular velocity. Note that a constant velocity is not necessarily a requirement for a curve;
- * slerp (spherical linear interpolation): the interpolation curve forms a great arc on the quaternion unit sphere. Slerp provides constant angular velocity;
- * squad (spherical spline interpolation): interpolating between a series of rotations using slerp leads to the following problems:
- * - the curve is not smooth at the control points;
- * - the angular velocity is not constant;
- * - the angular velocity is not continuous at the control points.
- *
- * Since squad is continuously differentiable, it remedies the first and third problems mentioned above.
- * The slerp method provided here is intended for interpolation of principal rotations. It treats +q and -q as the same principal rotation and is at liberty to use the negative of either input. The resulting path is always the shorter arc.
- *
- * The lerp method provided here interpolates strictly in quaternion space. Note that the resulting path may pass through the origin if interpolating between a quaternion and its exact negative.
- *
- * As an example, consider the following quaternions:
- *
- * q1 = (0.6, 0.8, 0.0, 0.0),
- * q2 = (0.0, 0.6, 0.8, 0.0),
- * q3 = (0.6, 0.0, 0.8, 0.0), and
- * q4 = (-0.8, 0.0, -0.6, 0.0).
- * For the point p = (1.0, 1.0, 1.0), the following figures show the trajectories of p using lerp, slerp, and squad.
- */
- class Quaternion
- {
- friend class Curve;
- public:
- /**
- * The x-value of the quaternion's vector component.
- */
- float x;
- /**
- * The y-value of the quaternion's vector component.
- */
- float y;
- /**
- * The z-value of the quaternion's vector component.
- */
- float z;
- /**
- * The scalar component of the quaternion.
- */
- float w;
- /**
- * Constructs a quaternion initialized to (0, 0, 0, 1).
- */
- Quaternion();
- /**
- * Constructs a quaternion initialized to (0, 0, 0, 1).
- *
- * @param x The x component of the quaternion.
- * @param y The y component of the quaternion.
- * @param z The z component of the quaternion.
- * @param w The w component of the quaternion.
- */
- Quaternion(float x, float y, float z, float w);
- /**
- * Constructs a new quaternion from the values in the specified array.
- *
- * @param array The values for the new quaternion.
- */
- Quaternion(float* array);
- /**
- * Constructs a quaternion equal to the rotation from the specified axis and angle.
- *
- * @param axis A vector describing the axis of rotation.
- * @param angle The angle of rotation (in radians).
- */
- Quaternion(const Vector3& axis, float angle);
- /**
- * Constructs a new quaternion that is a copy of the specified one.
- *
- * @param copy The quaternion to copy.
- */
- Quaternion(const Quaternion& copy);
- /**
- * Destructor.
- */
- ~Quaternion();
- /**
- * Returns the identity quaternion.
- *
- * @return The identity quaternion.
- */
- static const Quaternion& identity();
- /**
- * Returns the quaternion with all zeros.
- *
- * @return The quaternion.
- */
- static const Quaternion& zero();
- /**
- * Determines if this quaternion is equal to the identity quaternion.
- *
- * @return true if it is the identity quaternion, false otherwise.
- */
- bool isIdentity() const;
- /**
- * Determines if this quaternion is all zeros.
- *
- * @return true if this quaternion is all zeros, false otherwise.
- */
- bool isZero() const;
- /**
- * Creates this quaternion equal to the rotation from the specified axis and angle
- * and stores the result in dst.
- *
- * @param axis A vector describing the axis of rotation.
- * @param angle The angle of rotation (in radians).
- * @param dst A quaternion to store the conjugate in.
- */
- static void createFromAxisAngle(const Vector3& axis, float angle, Quaternion* dst);
- /**
- * Sets this quaternion to the conjugate of itself.
- */
- void conjugate();
- /**
- * Gets the conjugate of this quaternion in dst.
- *
- * @param dst A quaternion to store the conjugate in.
- */
- void conjugate(Quaternion* dst) const;
- /**
- * Sets this quaternion to the inverse of itself.
- *
- * Note that the inverse of a quaternion is equal to its conjugate
- * when the quaternion is unit-length. For this reason, it is more
- * efficient to use the conjugate method directly when you know your
- * quaternion is already unit-length.
- *
- * @return true if the inverse can be computed, false otherwise.
- */
- bool inverse();
- /**
- * Gets the inverse of this quaternion in dst.
- *
- * Note that the inverse of a quaternion is equal to its conjugate
- * when the quaternion is unit-length. For this reason, it is more
- * efficient to use the conjugate method directly when you know your
- * quaternion is already unit-length.
- *
- * @param dst A quaternion to store the inverse in.
- *
- * @return true if the inverse can be computed, false otherwise.
- */
- bool inverse(Quaternion* dst) const;
- /**
- * Multiplies this quaternion by the specified one and stores the result in this quaternion.
- *
- * @param q The quaternion to multiply.
- */
- void multiply(const Quaternion& q);
- /**
- * Multiplies the specified quaternions and stores the result in dst.
- *
- * @param q1 The first quaternion.
- * @param q2 The second quaternion.
- * @param dst A quaternion to store the result in.
- */
- static void multiply(const Quaternion& q1, const Quaternion& q2, Quaternion* dst);
- /**
- * Normalizes this quaternion to have unit length.
- *
- * If the quaternion already has unit length or if the length
- * of the quaternion is zero, this method does nothing.
- */
- void normalize();
- /**
- * Normalizes this quaternion and stores the result in dst.
- *
- * If the quaternion already has unit length or if the length
- * of the quaternion is zero, this method simply copies
- * this vector into dst.
- *
- * @param dst A quaternion to store the result in.
- */
- void normalize(Quaternion* dst) const;
- /**
- * Sets the elements of the quaternion to the specified values.
- *
- * @param x The new x-value.
- * @param y The new y-value.
- * @param z The new z-value.
- * @param w The new w-value.
- */
- void set(float x, float y, float z, float w);
- /**
- * Sets the elements of the quaternion from the values in the specified array.
- *
- * @param array An array containing the elements of the quaternion in the order x, y, z, w.
- */
- void set(float* array);
- /**
- * Sets the quaternion equal to the rotation from the specified axis and angle.
- *
- * @param axis The axis of rotation.
- * @param angle The angle of rotation (in radians).
- */
- void set(const Vector3& axis, float angle);
- /**
- * Sets the elements of this quaternion to a copy of the specified quaternion.
- *
- * @param q The quaternion to copy.
- */
- void set(const Quaternion& q);
- /**
- * Sets this quaternion to be equal to the identity quaternion.
- */
- void setIdentity();
- /**
- * Converts this Quaternion4f to axis-angle notation. The axis is normalized.
- *
- * @param e The Vector3f which stores the axis.
- *
- * @return The angle (in radians).
- */
- float toAxisAngle(Vector3* e) const;
- /**
- * Interpolates between two quaternions using linear interpolation.
- *
- * The interpolation curve for linear interpolation between
- * quaternions gives a straight line in quaternion space.
- *
- * @param q1 The first quaternion.
- * @param q2 The second quaternion.
- * @param t The interpolation coefficient.
- * @param dst A quaternion to store the result in.
- */
- static void lerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst);
-
- /**
- * Interpolates between two quaternions using spherical linear interpolation.
- *
- * Spherical linear interpolation provides smooth transitions between different
- * orientations and is often useful for animating models or cameras in 3D.
- *
- * Note: For accurate interpolation, the input quaternions must be at (or close to) unit length.
- * This method does not automatically normalize the input quaternions, so it is up to the
- * caller to ensure they call normalize beforehand, if necessary.
- *
- * @param q1 The first quaternion.
- * @param q2 The second quaternion.
- * @param t The interpolation coefficient.
- * @param dst A quaternion to store the result in.
- */
- static void slerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst);
-
- /**
- * Interpolates over a series of quaternions using spherical spline interpolation.
- *
- * Spherical spline interpolation provides smooth transitions between different
- * orientations and is often useful for animating models or cameras in 3D.
- *
- * Note: For accurate interpolation, the input quaternions must be unit.
- * This method does not automatically normalize the input quaternions,
- * so it is up to the caller to ensure they call normalize beforehand, if necessary.
- *
- * @param q1 The first quaternion.
- * @param q2 The second quaternion.
- * @param s1 The first control point.
- * @param s2 The second control point.
- * @param t The interpolation coefficient.
- * @param dst A quaternion to store the result in.
- */
- static void squad(const Quaternion& q1, const Quaternion& q2, const Quaternion& s1, const Quaternion& s2, float t, Quaternion* dst);
- /**
- * Calculates the quaternion product of this quaternion with the given quaternion.
- *
- * Note: this does not modify this quaternion.
- *
- * @param q The quaternion to multiply.
- * @return The quaternion product.
- */
- inline Quaternion operator*(const Quaternion& q) const;
- /**
- * Multiplies this quaternion with the given quaternion.
- *
- * @param q The quaternion to multiply.
- * @return This quaternion, after the multiplication occurs.
- */
- inline Quaternion& operator*=(const Quaternion& q);
- private:
- /**
- * Interpolates between two quaternions using spherical linear interpolation.
- *
- * Spherical linear interpolation provides smooth transitions between different
- * orientations and is often useful for animating models or cameras in 3D.
- *
- * Note: For accurate interpolation, the input quaternions must be at (or close to) unit length.
- * This method does not automatically normalize the input quaternions, so it is up to the
- * caller to ensure they call normalize beforehand, if necessary.
- *
- * @param q1x The x component of the first quaternion.
- * @param q1y The y component of the first quaternion.
- * @param q1z The z component of the first quaternion.
- * @param q1w The w component of the first quaternion.
- * @param q2x The x component of the second quaternion.
- * @param q2y The y component of the second quaternion.
- * @param q2z The z component of the second quaternion.
- * @param q2w The w component of the second quaternion.
- * @param t The interpolation coefficient.
- * @param dstx A pointer to store the x component of the slerp in.
- * @param dsty A pointer to store the y component of the slerp in.
- * @param dstz A pointer to store the z component of the slerp in.
- * @param dstw A pointer to store the w component of the slerp in.
- */
- static void slerp(float q1x, float q1y, float q1z, float q1w, float q2x, float q2y, float q2z, float q2w, float t, float* dstx, float* dsty, float* dstz, float* dstw);
- static void slerpForSquad(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst);
- };
- }
- #include "Quaternion.inl"
- #endif
|