| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- #include "Base.h"
- #include "Quaternion.h"
- namespace gameplay
- {
- Quaternion::Quaternion()
- : x(0.0f), y(0.0f), z(0.0f), w(1.0f)
- {
- }
- Quaternion::Quaternion(float x, float y, float z, float w)
- {
- set(x, y, z, w);
- }
- Quaternion::Quaternion(float* array)
- {
- set(array);
- }
- Quaternion::Quaternion(const Quaternion& copy)
- {
- set(copy);
- }
- Quaternion::~Quaternion()
- {
- }
- const Quaternion& Quaternion::identity()
- {
- static Quaternion* value = new Quaternion(0.0f, 0.0f, 0.0f, 1.0f);
- return *value;
- }
- const Quaternion& Quaternion::zero()
- {
- static Quaternion* value = new Quaternion(0.0f, 0.0f, 0.0f, 0.0f);
- return *value;
- }
- bool Quaternion::isIdentity() const
- {
- return x == 0.0f && y == 0.0f && z == 0.0f && w == 1.0f;
- }
- bool Quaternion::isZero() const
- {
- return x == 0.0f && y == 0.0f && z == 0.0f && z == 0.0f;
- }
- void Quaternion::createFromRotationMatrix(const Matrix& m, Quaternion* dst)
- {
- assert(dst);
- m.decompose(NULL, dst, NULL);
- }
- void Quaternion::createFromAxisAngle(const Vector3& axis, float angle, Quaternion* dst)
- {
- assert(dst);
- float halfAngle = angle * 0.5f;
- float sinHalfAngle = sinf(halfAngle);
- Vector3 normal(axis);
- normal.normalize();
- dst->x = normal.x * sinHalfAngle;
- dst->y = normal.y * sinHalfAngle;
- dst->z = normal.z * sinHalfAngle;
- dst->w = cosf(halfAngle);
- }
- void Quaternion::conjugate()
- {
- conjugate(this);
- }
- void Quaternion::conjugate(Quaternion* dst) const
- {
- dst->x = -x;
- dst->y = -y;
- dst->z = -z;
- dst->w = w;
- }
- bool Quaternion::inverse()
- {
- return inverse(this);
- }
- bool Quaternion::inverse(Quaternion* dst) const
- {
- float n = x * x + y * y + z * z + w * w;
- if (n == 1.0f)
- {
- dst->x = -x;
- dst->y = -y;
- dst->z = -z;
- dst->w = w;
- return true;
- }
- // too close to zero
- if (n < 0.000001f)
- return false;
- n = 1.0f / n;
- dst->x = -x * n;
- dst->y = -y * n;
- dst->z = -z * n;
- dst->w = w * n;
- return true;
- }
- void Quaternion::multiply(const Quaternion& q)
- {
- multiply(*this, q, this);
- }
- void Quaternion::multiply(const Quaternion& q1, const Quaternion& q2, Quaternion* dst)
- {
- float x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
- float y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;
- float z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;
- float w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
- dst->x = x;
- dst->y = y;
- dst->z = z;
- dst->w = w;
- }
- void Quaternion::normalize()
- {
- normalize(this);
- }
- void Quaternion::normalize(Quaternion* dst) const
- {
- assert(dst);
- if (this != dst)
- {
- dst->x = x;
- dst->y = y;
- dst->z = z;
- dst->w = w;
- }
- float n = x * x + y * y + z * z + w * w;
- // already normalized
- if (n == 1.0f)
- return;
- n = sqrt(n);
- // too close to zero
- if (n < 0.000001f)
- return;
- n = 1.0f / n;
- dst->x *= n;
- dst->y *= n;
- dst->z *= n;
- dst->w *= n;
- }
- void Quaternion::set(float x, float y, float z, float w)
- {
- this->x = x;
- this->y = y;
- this->z = z;
- this->w = w;
- }
- void Quaternion::set(float* array)
- {
- assert(array);
- x = array[0];
- y = array[1];
- z = array[2];
- w = array[3];
- }
- void Quaternion::set(const Quaternion& q)
- {
- this->x = q.x;
- this->y = q.y;
- this->z = q.z;
- this->w = q.w;
- }
- void Quaternion::setIdentity()
- {
- x = 0.0f;
- y = 0.0f;
- z = 0.0f;
- w = 1.0f;
- }
- float Quaternion::toAxisAngle(Vector3* axis) const
- {
- assert(axis);
- Quaternion q(x, y, z, w);
- q.normalize();
- axis->x = q.x;
- axis->y = q.y;
- axis->z = q.z;
- axis->normalize();
- return (2.0f * acos(q.w));
- }
- void Quaternion::lerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
- {
- assert(dst);
- assert(!(t < 0.0f || t > 1.0f));
- float t1 = 1.0f - t;
- dst->x = t1 * q1.x + t * q2.x;
- dst->y = t1 * q1.y + t * q2.y;
- dst->z = t1 * q1.z + t * q2.z;
- dst->w = t1 * q1.w + t * q2.w;
- }
- void Quaternion::slerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
- {
- // Fast slerp implementation by kwhatmough:
- // It contains no division operations, no trig, no inverse trig
- // and no sqrt. Not only does this code tolerate small constraint
- // errors in the input quaternions, it actually corrects for them.
- assert(dst);
- assert(!(t < 0.0f || t > 1.0f));
- float halfY, alpha, beta;
- float u, f1, f2a, f2b;
- float ratio1, ratio2;
- float halfSecHalfTheta, versHalfTheta;
- float sqNotU, sqU;
- float cosTheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z;
- // As usual in all slerp implementations, we fold theta.
- alpha = cosTheta >= 0 ? 1.0f : -1.0f;
- halfY = 1.0f + alpha * cosTheta;
- // Here we bisect the interval, so we need to fold t as well.
- f2b = t - 0.5f;
- u = f2b >= 0 ? f2b : -f2b;
- f2a = u - f2b;
- f2b += u;
- u += u;
- f1 = 1.0f - u;
- // One iteration of Newton to get 1-cos(theta / 2) to good accuracy.
- halfSecHalfTheta = 1.09f - (0.476537f - 0.0903321f * halfY) * halfY;
- halfSecHalfTheta *= 1.5f - halfY * halfSecHalfTheta * halfSecHalfTheta;
- versHalfTheta = 1.0f - halfY * halfSecHalfTheta;
- // Evaluate series expansions of the coefficients.
- sqNotU = f1 * f1;
- ratio2 = 0.0000440917108f * versHalfTheta;
- ratio1 = -0.00158730159f + (sqNotU - 16.0f) * ratio2;
- ratio1 = 0.0333333333f + ratio1 * (sqNotU - 9.0f) * versHalfTheta;
- ratio1 = -0.333333333f + ratio1 * (sqNotU - 4.0f) * versHalfTheta;
- ratio1 = 1.0f + ratio1 * (sqNotU - 1.0f) * versHalfTheta;
- sqU = u * u;
- ratio2 = -0.00158730159f + (sqU - 16.0f) * ratio2;
- ratio2 = 0.0333333333f + ratio2 * (sqU - 9.0f) * versHalfTheta;
- ratio2 = -0.333333333f + ratio2 * (sqU - 4.0f) * versHalfTheta;
- ratio2 = 1.0f + ratio2 * (sqU - 1.0f) * versHalfTheta;
- // Perform the bisection and resolve the folding done earlier.
- f1 *= ratio1 * halfSecHalfTheta;
- f2a *= ratio2;
- f2b *= ratio2;
- alpha *= f1 + f2a;
- beta = f1 + f2b;
- // Apply final coefficients to a and b as usual.
- float w = alpha * q1.w + beta * q2.w;
- float x = alpha * q1.x + beta * q2.x;
- float y = alpha * q1.y + beta * q2.y;
- float z = alpha * q1.z + beta * q2.z;
- // This final adjustment to the quaternion's length corrects for
- // any small constraint error in the inputs q1 and q2. But as you
- // can see, it comes at the cost of 9 additional multiplication
- // operations. If this error-correcting feature is not required,
- // the following code may be removed.
- f1 = 1.5f - 0.5f * (w * w + x * x + y * y + z * z);
- dst->w = w * f1;
- dst->x = x * f1;
- dst->y = y * f1;
- dst->z = z * f1;
- }
- void Quaternion::squad(const Quaternion& q1, const Quaternion& q2, const Quaternion& s1, const Quaternion& s2, float t, Quaternion* dst)
- {
- assert(dst);
- assert(!(t < 0.0f || t > 1.0f));
- Quaternion dstQ(0.0f, 0.0f, 0.0f, 1.0f);
- Quaternion dstS(0.0f, 0.0f, 0.0f, 1.0f);
- slerpForSquad(q1, q2, t, &dstQ);
- slerpForSquad(s1, s2, t, &dstS);
- slerpForSquad(dstQ, dstS, 2.0f * t * (1.0f - t), dst);
- }
- void Quaternion::slerpForSquad(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
- {
- // cos(omega) = q1 * q2;
- // slerp(q1, q2, t) = (q1*sin((1-t)*omega) + q2*sin(t*omega))/sin(omega);
- // q1 = +- q2, slerp(q1,q2,t) = q1.
- // This is a straight-foward implementation of the formula of slerp. It does not do any sign switching.
- float c = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
- if (fabs(c) >= 1.0f)
- {
- dst->x = q1.x;
- dst->y = q1.y;
- dst->z = q1.z;
- dst->w = q1.w;
- return;
- }
- float omega = acos(c);
- float s = sqrt(1.0f - c * c);
- if (fabs(s) <= 0.00001f)
- {
- dst->x = q1.x;
- dst->y = q1.y;
- dst->z = q1.z;
- dst->w = q1.w;
- return;
- }
- float r1 = sin((1 - t) * omega) / s;
- float r2 = sin(t * omega) / s;
- dst->x = (q1.x * r1 + q2.x * r2);
- dst->y = (q1.y * r1 + q2.y * r2);
- dst->z = (q1.z * r1 + q2.z * r2);
- dst->w = (q1.w * r1 + q2.w * r2);
- }
- }
|