| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- #include "Base.h"
- #include "Mesh.h"
- #include "Model.h"
- namespace gameplay
- {
- Mesh::Mesh(void) : model(NULL)
- {
- }
- Mesh::~Mesh(void)
- {
- }
- unsigned int Mesh::getTypeId(void) const
- {
- return MESH_ID;
- }
- const char* Mesh::getElementName(void) const
- {
- return "Mesh";
- }
- void Mesh::writeBinary(FILE* file)
- {
- Object::writeBinary(file);
- // vertex formats
- write(_vertexFormat.size(), file);
- for (std::vector<VertexElement>::iterator i = _vertexFormat.begin(); i != _vertexFormat.end(); i++)
- {
- i->writeBinary(file);
- }
- // vertices
- writeBinaryVertices(file);
- // parts
- writeBinaryObjects(parts, file);
- }
- /////////////////////////////////////////////////////////////
- //
- // Fast, Minimum Storage Ray-Triangle Intersection
- //
- // Authors: Tomas Möller, Ben Trumbore
- // http://jgt.akpeters.com/papers/MollerTrumbore97
- //
- // Implementation of algorithm from Real-Time Rendering (vol 1), pg. 305.
- //
- // Adapted slightly for use here.
- //
- #define EPSILON 0.000001
- #define CROSS(dest,v1,v2) \
- dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
- dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
- dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
- #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
- #define SUB(dest,v1,v2) \
- dest[0]=v1[0]-v2[0]; \
- dest[1]=v1[1]-v2[1]; \
- dest[2]=v1[2]-v2[2];
- int
- intersect_triangle(const float orig[3], const float dir[3],
- const float vert0[3], const float vert1[3], const float vert2[3],
- float *t, float *u, float *v)
- {
- float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
- float det,inv_det;
- /* find vectors for two edges sharing vert0 */
- SUB(edge1, vert1, vert0);
- SUB(edge2, vert2, vert0);
- /* begin calculating determinant - also used to calculate U parameter */
- CROSS(pvec, dir, edge2);
- /* if determinant is near zero, ray lies in plane of triangle */
- det = DOT(edge1, pvec);
- if (det > -EPSILON && det < EPSILON)
- return 0;
- inv_det = 1.0f / det;
- /* calculate distance from vert0 to ray origin */
- SUB(tvec, orig, vert0);
- /* calculate U parameter and test bounds */
- *u = DOT(tvec, pvec) * inv_det;
- if (*u < 0.0 || *u > 1.0)
- return 0;
- /* prepare to test V parameter */
- CROSS(qvec, tvec, edge1);
- /* calculate V parameter and test bounds */
- *v = DOT(dir, qvec) * inv_det;
- if (*v < 0.0 || *u + *v > 1.0)
- return 0;
- /* calculate t, ray intersects triangle */
- *t = DOT(edge2, qvec) * inv_det;
- return 1;
- }
- // Performs an intersection test between a ray and the given mesh part
- // and stores the result in "point".
- bool intersect(const Vector3& rayOrigin, const Vector3& rayDirection, const std::vector<Vertex>& vertices, const std::vector<MeshPart*>& parts, Vector3* point)
- {
- const float* orig = &rayOrigin.x;
- const float* dir = &rayDirection.x;
- for (unsigned int i = 0, partCount = parts.size(); i < partCount; ++i)
- {
- MeshPart* part = parts[i];
- for (unsigned int j = 0, indexCount = part->getIndicesCount(); j < indexCount; j += 3)
- {
- const float* v0 = &vertices[part->getIndex( j )].position.x;
- const float* v1 = &vertices[part->getIndex(j+1)].position.x;
- const float* v2 = &vertices[part->getIndex(j+2)].position.x;
- float t, u, v;
- if (intersect_triangle(orig, dir, v0, v1, v2, &t, &u, &v))
- {
- // Found an intersection!
- if (point)
- {
- Vector3 rd(rayDirection);
- rd.scale(t);
- Vector3::add(rayOrigin, rd, point);
- }
- return true;
- }
- }
- }
- return false;
- }
- void Mesh::generateHeightmap(const char* filename)
- {
- // Shoot rays down from a point just above the max Y position of the mesh.
- // Compute ray-triangle intersection tests against the ray and this mesh to
- // generate heightmap data.
- Vector3 rayOrigin(0, bounds.max.y + 10, 0);
- Vector3 rayDirection(0, -1, 0);
- Vector3 intersectionPoint;
- int minX = (int)ceil(bounds.min.x);
- int maxX = (int)floor(bounds.max.x);
- int minZ = (int)ceil(bounds.min.z);
- int maxZ = (int)floor(bounds.max.z);
- int width = maxX - minX + 1;
- int height = maxZ - minZ + 1;
- float* heights = new float[width * height];
- int index = 0;
- float minHeight = FLT_MAX;
- float maxHeight = -FLT_MAX;
- for (int z = minZ; z <= maxZ; z++)
- {
- rayOrigin.z = (float)z;
- for (int x = minX; x <= maxX; x++)
- {
- float h;
- rayOrigin.x = (float)x;
- if (intersect(rayOrigin, rayDirection, vertices, parts, &intersectionPoint))
- {
- h = intersectionPoint.y;
- }
- else
- {
- h = 0;
- fprintf(stderr, "Warning: Heightmap triangle intersection failed for (%d, %d).\n", x, z);
- }
- if (h < minHeight)
- minHeight = h;
- if (h > maxHeight)
- maxHeight = h;
- heights[index++] = h;
- }
- }
-
- // Normalize the max height value
- maxHeight = maxHeight - minHeight;
- png_structp png_ptr = NULL;
- png_infop info_ptr = NULL;
- png_bytep row = NULL;
- FILE* fp = fopen(filename, "wb");
- if (fp == NULL)
- {
- fprintf(stderr, "Error: Failed to open file for writing: %s\n", filename);
- goto error;
- }
- png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
- if (png_ptr == NULL)
- {
- fprintf(stderr, "Error: Write struct creation failed: %s\n", filename);
- goto error;
- }
- info_ptr = png_create_info_struct(png_ptr);
- if (info_ptr == NULL)
- {
- fprintf(stderr, "Error: Info struct creation failed: %s\n", filename);
- goto error;
- }
- png_init_io(png_ptr, fp);
- png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
- png_write_info(png_ptr, info_ptr);
- // Allocate memory for a single row of image data
- row = (png_bytep)malloc(3 * width * sizeof(png_byte));
- for (int y = 0; y < height; y++)
- {
- for (int x = 0; x < width; x++)
- {
- // Write height value normalized between 0-255 (between min and max height)
- float h = heights[y*width + x];
- float nh = (h - minHeight) / maxHeight;
- png_byte b = (png_byte)(nh * 255.0f);
-
- int pos = x*3;
- row[pos] = row[pos+1] = row[pos+2] = b;
- }
- png_write_row(png_ptr, row);
- }
- png_write_end(png_ptr, NULL);
- DEBUGPRINT_VARG("> Saved heightmap: %s\n", filename);
- error:
- if (heights)
- delete[] heights;
- if (fp)
- fclose(fp);
- if (row)
- free(row);
- if (info_ptr)
- png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
- if (png_ptr)
- png_destroy_write_struct(&png_ptr, (png_infopp)NULL);
- }
- void Mesh::writeBinaryVertices(FILE* file)
- {
- if (vertices.size() > 0)
- {
- // Assumes that all vertices are the same size.
- // Write the number of bytes for the vertex data
- const Vertex& vertex = vertices.front();
- write(vertices.size() * vertex.byteSize(), file); // (vertex count) * (vertex size)
- // for each vertex
- for (std::vector<Vertex>::const_iterator i = vertices.begin(); i != vertices.end(); ++i)
- {
- // Write this vertex
- i->writeBinary(file);
- }
- }
- else
- {
- // No vertex data
- write((unsigned int)0, file);
- }
- // Write bounds
- write(&bounds.min.x, 3, file);
- write(&bounds.max.x, 3, file);
- write(&bounds.center.x, 3, file);
- write(bounds.radius, file);
- }
- void Mesh::writeText(FILE* file)
- {
- fprintElementStart(file);
- // for each VertexFormat
- if (vertices.size() > 0 )
- {
- for (std::vector<VertexElement>::iterator i = _vertexFormat.begin(); i != _vertexFormat.end(); i++)
- {
- i->writeText(file);
- }
- }
- // for each Vertex
- fprintf(file, "<vertices count=\"%lu\">\n", vertices.size());
- for (std::vector<Vertex>::iterator i = vertices.begin(); i != vertices.end(); ++i)
- {
- i->writeText(file);
- }
- fprintf(file, "</vertices>\n");
- // write bounds
- fprintf(file, "<bounds>\n");
- fprintf(file, "<min>\n");
- writeVectorText(bounds.min, file);
- fprintf(file, "</min>\n");
- fprintf(file, "<max>\n");
- writeVectorText(bounds.max, file);
- fprintf(file, "</max>\n");
- fprintf(file, "<center>\n");
- writeVectorText(bounds.center, file);
- fprintf(file, "</center>\n");
- fprintf(file, "<radius>%f</radius>\n", bounds.radius);
- fprintf(file, "</bounds>\n");
- // for each MeshPart
- for (std::vector<MeshPart*>::iterator i = parts.begin(); i != parts.end(); ++i)
- {
- (*i)->writeText(file);
- }
- fprintElementEnd(file);
- }
- void Mesh::addMeshPart(MeshPart* part)
- {
- parts.push_back(part);
- }
- void Mesh::addMeshPart(Vertex* vertex)
- {
- vertices.push_back(*vertex);
- }
- void Mesh::addVetexAttribute(unsigned int usage, unsigned int count)
- {
- _vertexFormat.push_back(VertexElement(usage, count));
- }
- size_t Mesh::getVertexCount() const
- {
- return vertices.size();
- }
- const Vertex& Mesh::getVertex(unsigned int index) const
- {
- return vertices[index];
- }
- size_t Mesh::getVertexElementCount() const
- {
- return _vertexFormat.size();
- }
- const VertexElement& Mesh::getVertexElement(unsigned int index) const
- {
- return _vertexFormat[index];
- }
- bool Mesh::contains(const Vertex& vertex) const
- {
- return vertexLookupTable.count(vertex) > 0;
- }
- unsigned int Mesh::addVertex(const Vertex& vertex)
- {
- unsigned int index = getVertexCount();
- vertices.push_back(vertex);
- vertexLookupTable[vertex] = index;
- return index;
- }
- unsigned int Mesh::getVertexIndex(const Vertex& vertex)
- {
- std::map<Vertex,unsigned int>::iterator it;
- it = vertexLookupTable.find(vertex);
- return it->second;
- }
- void Mesh::computeBounds()
- {
- // If we have a Model with a MeshSkin associated with it,
- // compute the bounds from the skin - otherwise compute
- // it from the local mesh data.
- if (model && model->getSkin())
- {
- model->getSkin()->computeBounds();
- return;
- }
- bounds.min.x = bounds.min.y = bounds.min.z = FLT_MAX;
- bounds.max.x = bounds.max.y = bounds.max.z = -FLT_MAX;
- bounds.center.x = bounds.center.y = bounds.center.z = 0.0f;
- bounds.radius = 0.0f;
- for (std::vector<Vertex>::const_iterator i = vertices.begin(); i != vertices.end(); ++i)
- {
- // Update min/max for this vertex
- if (i->position.x < bounds.min.x)
- bounds.min.x = i->position.x;
- if (i->position.y < bounds.min.y)
- bounds.min.y = i->position.y;
- if (i->position.z < bounds.min.z)
- bounds.min.z = i->position.z;
- if (i->position.x > bounds.max.x)
- bounds.max.x = i->position.x;
- if (i->position.y > bounds.max.y)
- bounds.max.y = i->position.y;
- if (i->position.z > bounds.max.z)
- bounds.max.z = i->position.z;
- }
- // Compute center point
- Vector3::add(bounds.min, bounds.max, &bounds.center);
- bounds.center.scale(0.5f);
- // Compute radius by looping through all points again and finding the max
- // distance between the center point and each vertex position
- for (std::vector<Vertex>::const_iterator i = vertices.begin(); i != vertices.end(); ++i)
- {
- float d = bounds.center.distanceSquared(i->position);
- if (d > bounds.radius)
- {
- bounds.radius = d;
- }
- }
- // Convert squared distance to distance for radius
- bounds.radius = sqrt(bounds.radius);
- }
- }
|