|
@@ -1,170 +0,0 @@
|
|
|
-// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
|
-// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
|
-// SPDX-License-Identifier: MIT
|
|
|
-
|
|
|
-#include <Jolt/Jolt.h>
|
|
|
-
|
|
|
-#include <Jolt/TriangleSplitter/TriangleSplitterFixedLeafSize.h>
|
|
|
-#include <Jolt/TriangleGrouper/TriangleGrouperClosestCentroid.h>
|
|
|
-
|
|
|
-JPH_NAMESPACE_BEGIN
|
|
|
-
|
|
|
-TriangleSplitterFixedLeafSize::TriangleSplitterFixedLeafSize(const VertexList &inVertices, const IndexedTriangleList &inTriangles, uint inLeafSize, uint inMinNumBins, uint inMaxNumBins, uint inNumTrianglesPerBin) :
|
|
|
- TriangleSplitter(inVertices, inTriangles),
|
|
|
- mLeafSize(inLeafSize),
|
|
|
- mMinNumBins(inMinNumBins),
|
|
|
- mMaxNumBins(inMaxNumBins),
|
|
|
- mNumTrianglesPerBin(inNumTrianglesPerBin)
|
|
|
-{
|
|
|
- // Group the triangles
|
|
|
- TriangleGrouperClosestCentroid grouper;
|
|
|
- grouper.Group(inVertices, inTriangles, mLeafSize, mSortedTriangleIdx);
|
|
|
-
|
|
|
- // Pad triangles so that we have a multiple of mLeafSize
|
|
|
- const uint num_triangles = (uint)inTriangles.size();
|
|
|
- const uint num_groups = (num_triangles + mLeafSize - 1) / mLeafSize;
|
|
|
- const uint last_triangle_idx = mSortedTriangleIdx.back();
|
|
|
- for (uint t = num_triangles, t_end = num_groups * mLeafSize; t < t_end; ++t)
|
|
|
- mSortedTriangleIdx.push_back(last_triangle_idx);
|
|
|
-}
|
|
|
-
|
|
|
-Vec3 TriangleSplitterFixedLeafSize::GetCentroidForGroup(uint inFirstTriangleInGroup)
|
|
|
-{
|
|
|
- JPH_ASSERT(inFirstTriangleInGroup % mLeafSize == 0);
|
|
|
- AABox box;
|
|
|
- for (uint g = 0; g < mLeafSize; ++g)
|
|
|
- box.Encapsulate(mVertices, GetTriangle(inFirstTriangleInGroup + g));
|
|
|
- return box.GetCenter();
|
|
|
-}
|
|
|
-
|
|
|
-bool TriangleSplitterFixedLeafSize::Split(const Range &inTriangles, Range &outLeft, Range &outRight)
|
|
|
-{
|
|
|
- // Cannot split anything smaller than leaf size
|
|
|
- JPH_ASSERT(inTriangles.Count() > mLeafSize);
|
|
|
- JPH_ASSERT(inTriangles.Count() % mLeafSize == 0);
|
|
|
-
|
|
|
- // Calculate bounds for this range
|
|
|
- AABox centroid_bounds;
|
|
|
- for (uint t = inTriangles.mBegin; t < inTriangles.mEnd; t += mLeafSize)
|
|
|
- centroid_bounds.Encapsulate(GetCentroidForGroup(t));
|
|
|
-
|
|
|
- float best_cp = FLT_MAX;
|
|
|
- uint best_dim = 0xffffffff;
|
|
|
- float best_split = 0;
|
|
|
-
|
|
|
- // Bin in all dimensions
|
|
|
- uint num_bins = Clamp(inTriangles.Count() / mNumTrianglesPerBin, mMinNumBins, mMaxNumBins);
|
|
|
- Array<Bin> bins(num_bins);
|
|
|
- for (uint dim = 0; dim < 3; ++dim)
|
|
|
- {
|
|
|
- float bounds_min = centroid_bounds.mMin[dim];
|
|
|
- float bounds_size = centroid_bounds.mMax[dim] - bounds_min;
|
|
|
-
|
|
|
- // Skip axis if too small
|
|
|
- if (bounds_size < 1.0e-5f)
|
|
|
- continue;
|
|
|
-
|
|
|
- // Initialize bins
|
|
|
- for (uint b = 0; b < num_bins; ++b)
|
|
|
- {
|
|
|
- Bin &bin = bins[b];
|
|
|
- bin.mBounds.SetEmpty();
|
|
|
- bin.mMinCentroid = bounds_min + bounds_size * (b + 1) / num_bins;
|
|
|
- bin.mNumTriangles = 0;
|
|
|
- }
|
|
|
-
|
|
|
- // Bin all triangles
|
|
|
- for (uint t = inTriangles.mBegin; t < inTriangles.mEnd; t += mLeafSize)
|
|
|
- {
|
|
|
- // Calculate average centroid for group
|
|
|
- float centroid_pos = GetCentroidForGroup(t)[dim];
|
|
|
-
|
|
|
- // Select bin
|
|
|
- uint bin_no = min(uint((centroid_pos - bounds_min) / bounds_size * num_bins), num_bins - 1);
|
|
|
- Bin &bin = bins[bin_no];
|
|
|
-
|
|
|
- // Put all triangles of group in same bin
|
|
|
- for (uint g = 0; g < mLeafSize; ++g)
|
|
|
- bin.mBounds.Encapsulate(mVertices, GetTriangle(t + g));
|
|
|
- bin.mMinCentroid = min(bin.mMinCentroid, centroid_pos);
|
|
|
- bin.mNumTriangles += mLeafSize;
|
|
|
- }
|
|
|
-
|
|
|
- // Calculate totals left to right
|
|
|
- AABox prev_bounds;
|
|
|
- int prev_triangles = 0;
|
|
|
- for (uint b = 0; b < num_bins; ++b)
|
|
|
- {
|
|
|
- Bin &bin = bins[b];
|
|
|
- bin.mBoundsAccumulatedLeft = prev_bounds; // Don't include this node as we'll take a split on the left side of the bin
|
|
|
- bin.mNumTrianglesAccumulatedLeft = prev_triangles;
|
|
|
- prev_bounds.Encapsulate(bin.mBounds);
|
|
|
- prev_triangles += bin.mNumTriangles;
|
|
|
- }
|
|
|
-
|
|
|
- // Calculate totals right to left
|
|
|
- prev_bounds.SetEmpty();
|
|
|
- prev_triangles = 0;
|
|
|
- for (int b = num_bins - 1; b >= 0; --b)
|
|
|
- {
|
|
|
- Bin &bin = bins[b];
|
|
|
- prev_bounds.Encapsulate(bin.mBounds);
|
|
|
- prev_triangles += bin.mNumTriangles;
|
|
|
- bin.mBoundsAccumulatedRight = prev_bounds;
|
|
|
- bin.mNumTrianglesAccumulatedRight = prev_triangles;
|
|
|
- }
|
|
|
-
|
|
|
- // Get best splitting plane
|
|
|
- for (uint b = 1; b < num_bins; ++b) // Start at 1 since selecting bin 0 would result in everything ending up on the right side
|
|
|
- {
|
|
|
- // Calculate surface area heuristic and see if it is better than the current best
|
|
|
- const Bin &bin = bins[b];
|
|
|
- float cp = bin.mBoundsAccumulatedLeft.GetSurfaceArea() * bin.mNumTrianglesAccumulatedLeft + bin.mBoundsAccumulatedRight.GetSurfaceArea() * bin.mNumTrianglesAccumulatedRight;
|
|
|
- if (cp < best_cp)
|
|
|
- {
|
|
|
- best_cp = cp;
|
|
|
- best_dim = dim;
|
|
|
- best_split = bin.mMinCentroid;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // No split found?
|
|
|
- if (best_dim == 0xffffffff)
|
|
|
- return false;
|
|
|
-
|
|
|
- // Divide triangles
|
|
|
- uint start = inTriangles.mBegin, end = inTriangles.mEnd;
|
|
|
- while (start < end)
|
|
|
- {
|
|
|
- // Search for first element that is on the right hand side of the split plane
|
|
|
- while (start < end && GetCentroidForGroup(start)[best_dim] < best_split)
|
|
|
- start += mLeafSize;
|
|
|
-
|
|
|
- // Search for the first element that is on the left hand side of the split plane
|
|
|
- while (start < end && GetCentroidForGroup(end - mLeafSize)[best_dim] >= best_split)
|
|
|
- end -= mLeafSize;
|
|
|
-
|
|
|
- if (start < end)
|
|
|
- {
|
|
|
- // Swap the two elements
|
|
|
- for (uint g = 0; g < mLeafSize; ++g)
|
|
|
- std::swap(mSortedTriangleIdx[start + g], mSortedTriangleIdx[end - mLeafSize + g]);
|
|
|
- start += mLeafSize;
|
|
|
- end -= mLeafSize;
|
|
|
- }
|
|
|
- }
|
|
|
- JPH_ASSERT(start == end);
|
|
|
-
|
|
|
- // No suitable split found, doing random split in half
|
|
|
- if (start == inTriangles.mBegin || start == inTriangles.mEnd)
|
|
|
- start = inTriangles.mBegin + (inTriangles.Count() / mLeafSize + 1) / 2 * mLeafSize;
|
|
|
-
|
|
|
- outLeft = Range(inTriangles.mBegin, start);
|
|
|
- outRight = Range(start, inTriangles.mEnd);
|
|
|
- JPH_ASSERT(outLeft.mEnd > outLeft.mBegin && outRight.mEnd > outRight.mBegin);
|
|
|
- JPH_ASSERT(outLeft.Count() % mLeafSize == 0 && outRight.Count() % mLeafSize == 0);
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-JPH_NAMESPACE_END
|