|
@@ -43,7 +43,7 @@ class AxisConstraintPart
|
|
|
{
|
|
|
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
|
- JPH_INLINE bool ApplyVelocityStep(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inLambda) const
|
|
|
+ JPH_INLINE bool ApplyVelocityStep(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inLambda) const
|
|
|
{
|
|
|
// Apply impulse if delta is not zero
|
|
|
if (inLambda != 0.0f)
|
|
@@ -57,12 +57,12 @@ class AxisConstraintPart
|
|
|
// v' = v + M^-1 P
|
|
|
if constexpr (Type1 == EMotionType::Dynamic)
|
|
|
{
|
|
|
- ioMotionProperties1->SubLinearVelocityStep((inLambda * mInverseMass1) * inWorldSpaceAxis);
|
|
|
+ ioMotionProperties1->SubLinearVelocityStep((inLambda * inInvMass1) * inWorldSpaceAxis);
|
|
|
ioMotionProperties1->SubAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis));
|
|
|
}
|
|
|
if constexpr (Type2 == EMotionType::Dynamic)
|
|
|
{
|
|
|
- ioMotionProperties2->AddLinearVelocityStep((inLambda * mInverseMass2) * inWorldSpaceAxis);
|
|
|
+ ioMotionProperties2->AddLinearVelocityStep((inLambda * inInvMass2) * inWorldSpaceAxis);
|
|
|
ioMotionProperties2->AddAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis));
|
|
|
}
|
|
|
return true;
|
|
@@ -81,7 +81,6 @@ class AxisConstraintPart
|
|
|
Vec3 r1_plus_u_x_axis;
|
|
|
if constexpr (Type1 != EMotionType::Static)
|
|
|
{
|
|
|
- mInverseMass1 = inInvMass1;
|
|
|
r1_plus_u_x_axis = inR1PlusU.Cross(inWorldSpaceAxis);
|
|
|
r1_plus_u_x_axis.StoreFloat3(&mR1PlusUxAxis);
|
|
|
}
|
|
@@ -89,14 +88,12 @@ class AxisConstraintPart
|
|
|
{
|
|
|
#ifdef _DEBUG
|
|
|
Vec3::sNaN().StoreFloat3(&mR1PlusUxAxis);
|
|
|
- mInverseMass1 = numeric_limits<float>::quiet_NaN();
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
Vec3 r2_x_axis;
|
|
|
if constexpr (Type2 != EMotionType::Static)
|
|
|
{
|
|
|
- mInverseMass2 = inInvMass2;
|
|
|
r2_x_axis = inR2.Cross(inWorldSpaceAxis);
|
|
|
r2_x_axis.StoreFloat3(&mR2xAxis);
|
|
|
}
|
|
@@ -104,7 +101,6 @@ class AxisConstraintPart
|
|
|
{
|
|
|
#ifdef _DEBUG
|
|
|
Vec3::sNaN().StoreFloat3(&mR2xAxis);
|
|
|
- mInverseMass2 = numeric_limits<float>::quiet_NaN();
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -115,7 +111,7 @@ class AxisConstraintPart
|
|
|
{
|
|
|
Vec3 invi1_r1_plus_u_x_axis = inInvI1.Multiply3x3(r1_plus_u_x_axis);
|
|
|
invi1_r1_plus_u_x_axis.StoreFloat3(&mInvI1_R1PlusUxAxis);
|
|
|
- inv_effective_mass = mInverseMass1 + invi1_r1_plus_u_x_axis.Dot(r1_plus_u_x_axis);
|
|
|
+ inv_effective_mass = inInvMass1 + invi1_r1_plus_u_x_axis.Dot(r1_plus_u_x_axis);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
@@ -128,7 +124,7 @@ class AxisConstraintPart
|
|
|
{
|
|
|
Vec3 invi2_r2_x_axis = inInvI2.Multiply3x3(r2_x_axis);
|
|
|
invi2_r2_x_axis.StoreFloat3(&mInvI2_R2xAxis);
|
|
|
- inv_effective_mass += mInverseMass2 + invi2_r2_x_axis.Dot(r2_x_axis);
|
|
|
+ inv_effective_mass += inInvMass2 + invi2_r2_x_axis.Dot(r2_x_axis);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
@@ -148,18 +144,18 @@ class AxisConstraintPart
|
|
|
case EMotionType::Dynamic:
|
|
|
{
|
|
|
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
|
- float invm1 = mp1->GetInverseMass();
|
|
|
- Mat44 invi1 = inBody1.GetInverseInertia();
|
|
|
+ float inv_m1 = mp1->GetInverseMass();
|
|
|
+ Mat44 inv_i1 = inBody1.GetInverseInertia();
|
|
|
switch (inBody2.GetMotionType())
|
|
|
{
|
|
|
case EMotionType::Dynamic:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Dynamic>(invm1, invi1, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Dynamic>(inv_m1, inv_i1, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
|
|
|
case EMotionType::Kinematic:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Kinematic>(invm1, invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Kinematic>(inv_m1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
|
|
|
case EMotionType::Static:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Static>(invm1, invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Static>(inv_m1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
|
|
|
default:
|
|
|
break;
|
|
@@ -184,26 +180,24 @@ class AxisConstraintPart
|
|
|
}
|
|
|
|
|
|
/// Internal helper function to calculate the inverse effective mass, version that supports mass scaling
|
|
|
- JPH_INLINE float CalculateInverseEffectiveMassWithMassScale(const Body &inBody1, float inInvMassScale1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMassScale2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis)
|
|
|
+ JPH_INLINE float CalculateInverseEffectiveMassWithMassOverride(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis)
|
|
|
{
|
|
|
// Dispatch to the correct templated form
|
|
|
switch (inBody1.GetMotionType())
|
|
|
{
|
|
|
case EMotionType::Dynamic:
|
|
|
{
|
|
|
- const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
|
- float invm1 = inInvMassScale1 * mp1->GetInverseMass();
|
|
|
- Mat44 invi1 = inInvInertiaScale1 * inBody1.GetInverseInertia();
|
|
|
+ Mat44 inv_i1 = inInvInertiaScale1 * inBody1.GetInverseInertia();
|
|
|
switch (inBody2.GetMotionType())
|
|
|
{
|
|
|
case EMotionType::Dynamic:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Dynamic>(invm1, invi1, inR1PlusU, inInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Dynamic>(inInvMass1, inv_i1, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
|
|
|
case EMotionType::Kinematic:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Kinematic>(invm1, invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Kinematic>(inInvMass1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
|
|
|
case EMotionType::Static:
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Static>(invm1, invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Static>(inInvMass1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
|
|
|
|
|
|
default:
|
|
|
break;
|
|
@@ -213,11 +207,11 @@ class AxisConstraintPart
|
|
|
|
|
|
case EMotionType::Kinematic:
|
|
|
JPH_ASSERT(inBody2.IsDynamic());
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Kinematic, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Kinematic, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
|
|
|
case EMotionType::Static:
|
|
|
JPH_ASSERT(inBody2.IsDynamic());
|
|
|
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Static, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
+ return TemplatedCalculateInverseEffectiveMass<EMotionType::Static, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
|
|
|
|
|
|
default:
|
|
|
break;
|
|
@@ -262,17 +256,17 @@ public:
|
|
|
/// Calculate properties used during the functions below, version that supports mass scaling
|
|
|
/// @param inBody1 The first body that this constraint is attached to
|
|
|
/// @param inBody2 The second body that this constraint is attached to
|
|
|
- /// @param inInvMassScale1 Scale factor for the inverse mass of body 1
|
|
|
- /// @param inInvMassScale2 Scale factor for the inverse mass of body 2
|
|
|
+ /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic)
|
|
|
+ /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic)
|
|
|
/// @param inInvInertiaScale1 Scale factor for the inverse inertia of body 1
|
|
|
/// @param inInvInertiaScale2 Scale factor for the inverse inertia of body 2
|
|
|
/// @param inR1PlusU See equations above (r1 + u)
|
|
|
/// @param inR2 See equations above (r2)
|
|
|
/// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2)
|
|
|
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
|
|
|
- inline void CalculateConstraintPropertiesWithMassScale(const Body &inBody1, float inInvMassScale1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMassScale2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f)
|
|
|
+ inline void CalculateConstraintPropertiesWithMassOverride(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f)
|
|
|
{
|
|
|
- float inv_effective_mass = CalculateInverseEffectiveMassWithMassScale(inBody1, inInvMassScale1, inInvInertiaScale1, inR1PlusU, inBody2, inInvMassScale2, inInvInertiaScale2, inR2, inWorldSpaceAxis);
|
|
|
+ float inv_effective_mass = CalculateInverseEffectiveMassWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, inR1PlusU, inBody2, inInvMass2, inInvInertiaScale2, inR2, inWorldSpaceAxis);
|
|
|
|
|
|
if (inv_effective_mass == 0.0f)
|
|
|
Deactivate();
|
|
@@ -353,11 +347,11 @@ public:
|
|
|
|
|
|
/// Templated form of WarmStart with the motion types baked in
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
|
- inline void TemplatedWarmStart(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio)
|
|
|
+ inline void TemplatedWarmStart(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio)
|
|
|
{
|
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
|
|
|
|
- ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, mTotalLambda);
|
|
|
+ ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, mTotalLambda);
|
|
|
}
|
|
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
@@ -378,14 +372,14 @@ public:
|
|
|
if (motion_type1 == EMotionType::Dynamic)
|
|
|
{
|
|
|
if (motion_type2 == EMotionType::Dynamic)
|
|
|
- TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
+ TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
else
|
|
|
- TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
+ TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
- TemplatedWarmStart<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
+ TemplatedWarmStart<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inWarmStartImpulseRatio);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -421,24 +415,24 @@ public:
|
|
|
|
|
|
/// Templated form of SolveVelocityConstraint with the motion types baked in, part 2: apply new lambda
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
|
- JPH_INLINE bool TemplatedSolveVelocityConstraintApplyLambda(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inTotalLambda)
|
|
|
+ JPH_INLINE bool TemplatedSolveVelocityConstraintApplyLambda(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inTotalLambda)
|
|
|
{
|
|
|
float delta_lambda = inTotalLambda - mTotalLambda; // Calculate change in lambda
|
|
|
mTotalLambda = inTotalLambda; // Store accumulated impulse
|
|
|
|
|
|
- return ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, delta_lambda);
|
|
|
+ return ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, delta_lambda);
|
|
|
}
|
|
|
|
|
|
/// Templated form of SolveVelocityConstraint with the motion types baked in
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
|
- inline bool TemplatedSolveVelocityConstraint(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
|
|
|
+ inline bool TemplatedSolveVelocityConstraint(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
|
|
|
{
|
|
|
float total_lambda = TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis);
|
|
|
|
|
|
// Clamp impulse to specified range
|
|
|
total_lambda = Clamp(total_lambda, inMinLambda, inMaxLambda);
|
|
|
|
|
|
- return TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, total_lambda);
|
|
|
+ return TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, total_lambda);
|
|
|
}
|
|
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
@@ -462,13 +456,66 @@ public:
|
|
|
switch (motion_type2)
|
|
|
{
|
|
|
case EMotionType::Dynamic:
|
|
|
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+
|
|
|
+ case EMotionType::Kinematic:
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+
|
|
|
+ case EMotionType::Static:
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+
|
|
|
+ default:
|
|
|
+ JPH_ASSERT(false);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+
|
|
|
+ case EMotionType::Kinematic:
|
|
|
+ JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+
|
|
|
+ case EMotionType::Static:
|
|
|
+ JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+
|
|
|
+ default:
|
|
|
+ JPH_ASSERT(false);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
|
+ /// @param ioBody1 The first body that this constraint is attached to
|
|
|
+ /// @param ioBody2 The second body that this constraint is attached to
|
|
|
+ /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic)
|
|
|
+ /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic)
|
|
|
+ /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized)
|
|
|
+ /// @param inMinLambda Minimum value of constraint impulse to apply (N s)
|
|
|
+ /// @param inMaxLambda Maximum value of constraint impulse to apply (N s)
|
|
|
+ inline bool SolveVelocityConstraintWithMassOverride(Body &ioBody1, float inInvMass1, Body &ioBody2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
|
|
|
+ {
|
|
|
+ EMotionType motion_type1 = ioBody1.GetMotionType();
|
|
|
+ MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked();
|
|
|
+
|
|
|
+ EMotionType motion_type2 = ioBody2.GetMotionType();
|
|
|
+ MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked();
|
|
|
+
|
|
|
+ // Dispatch to the correct templated form
|
|
|
+ switch (motion_type1)
|
|
|
+ {
|
|
|
+ case EMotionType::Dynamic:
|
|
|
+ switch (motion_type2)
|
|
|
+ {
|
|
|
+ case EMotionType::Dynamic:
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, inInvMass1, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
|
|
|
case EMotionType::Kinematic:
|
|
|
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(motion_properties1, inInvMass1, motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
|
|
|
case EMotionType::Static:
|
|
|
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, inInvMass1, motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
|
|
|
default:
|
|
|
JPH_ASSERT(false);
|
|
@@ -478,11 +525,11 @@ public:
|
|
|
|
|
|
case EMotionType::Kinematic:
|
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
- return TemplatedSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(motion_properties1, 0.0f /* Unused */, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
|
|
|
case EMotionType::Static:
|
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
- return TemplatedSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
+ return TemplatedSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, 0.0f /* Unused */, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
|
|
|
|
|
|
default:
|
|
|
JPH_ASSERT(false);
|
|
@@ -527,12 +574,63 @@ public:
|
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
|
if (ioBody1.IsDynamic())
|
|
|
{
|
|
|
- ioBody1.SubPositionStep((lambda * mInverseMass1) * inWorldSpaceAxis);
|
|
|
+ ioBody1.SubPositionStep((lambda * ioBody1.GetMotionProperties()->GetInverseMass()) * inWorldSpaceAxis);
|
|
|
+ ioBody1.SubRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis));
|
|
|
+ }
|
|
|
+ if (ioBody2.IsDynamic())
|
|
|
+ {
|
|
|
+ ioBody2.AddPositionStep((lambda * ioBody2.GetMotionProperties()->GetInverseMass()) * inWorldSpaceAxis);
|
|
|
+ ioBody2.AddRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis));
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Iteratively update the position constraint. Makes sure C(...) = 0.
|
|
|
+ /// @param ioBody1 The first body that this constraint is attached to
|
|
|
+ /// @param ioBody2 The second body that this constraint is attached to
|
|
|
+ /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic)
|
|
|
+ /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic)
|
|
|
+ /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized)
|
|
|
+ /// @param inC Value of the constraint equation (C)
|
|
|
+ /// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
|
|
|
+ inline bool SolvePositionConstraintWithMassOverride(Body &ioBody1, float inInvMass1, Body &ioBody2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inC, float inBaumgarte) const
|
|
|
+ {
|
|
|
+ // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
|
|
|
+ if (inC != 0.0f && !mSpringPart.IsActive())
|
|
|
+ {
|
|
|
+ // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
|
+ //
|
|
|
+ // lambda = -K^-1 * beta / dt * C
|
|
|
+ //
|
|
|
+ // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
|
+ float lambda = -mEffectiveMass * inBaumgarte * inC;
|
|
|
+
|
|
|
+ // Directly integrate velocity change for one time step
|
|
|
+ //
|
|
|
+ // Euler velocity integration:
|
|
|
+ // dv = M^-1 P
|
|
|
+ //
|
|
|
+ // Impulse:
|
|
|
+ // P = J^T lambda
|
|
|
+ //
|
|
|
+ // Euler position integration:
|
|
|
+ // x' = x + dv * dt
|
|
|
+ //
|
|
|
+ // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
|
+ // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
|
+ // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
|
+ // integrate + a position integrate and then discard the velocity change.
|
|
|
+ if (ioBody1.IsDynamic())
|
|
|
+ {
|
|
|
+ ioBody1.SubPositionStep((lambda * inInvMass1) * inWorldSpaceAxis);
|
|
|
ioBody1.SubRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis));
|
|
|
}
|
|
|
if (ioBody2.IsDynamic())
|
|
|
{
|
|
|
- ioBody2.AddPositionStep((lambda * mInverseMass2) * inWorldSpaceAxis);
|
|
|
+ ioBody2.AddPositionStep((lambda * inInvMass2) * inWorldSpaceAxis);
|
|
|
ioBody2.AddRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis));
|
|
|
}
|
|
|
return true;
|
|
@@ -570,8 +668,6 @@ private:
|
|
|
Float3 mR2xAxis;
|
|
|
Float3 mInvI1_R1PlusUxAxis;
|
|
|
Float3 mInvI2_R2xAxis;
|
|
|
- float mInverseMass1;
|
|
|
- float mInverseMass2;
|
|
|
float mEffectiveMass = 0.0f;
|
|
|
SpringPart mSpringPart;
|
|
|
float mTotalLambda = 0.0f;
|