// SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include #include #include #include #include #include #include #include #include #include #ifdef JPH_DEBUG_RENDERER #include #endif // JPH_DEBUG_RENDERER JPH_NAMESPACE_BEGIN CharacterVirtual::CharacterVirtual(const CharacterVirtualSettings *inSettings, Vec3Arg inPosition, QuatArg inRotation, PhysicsSystem *inSystem) : CharacterBase(inSettings, inSystem), mPredictiveContactDistance(inSettings->mPredictiveContactDistance), mMaxCollisionIterations(inSettings->mMaxCollisionIterations), mMaxConstraintIterations(inSettings->mMaxConstraintIterations), mMinTimeRemaining(inSettings->mMinTimeRemaining), mCollisionTolerance(inSettings->mCollisionTolerance), mCharacterPadding(inSettings->mCharacterPadding), mMaxNumHits(inSettings->mMaxNumHits), mPenetrationRecoverySpeed(inSettings->mPenetrationRecoverySpeed), mPosition(inPosition), mRotation(inRotation) { // Copy settings SetMaxStrength(inSettings->mMaxStrength); SetMass(inSettings->mMass); } template void CharacterVirtual::sFillContactProperties(Contact &outContact, const Body &inBody, Vec3Arg inUp, const taCollector &inCollector, const CollideShapeResult &inResult) { outContact.mPosition = inResult.mContactPointOn2; outContact.mLinearVelocity = inBody.GetPointVelocity(inResult.mContactPointOn2); outContact.mContactNormal = -inResult.mPenetrationAxis.NormalizedOr(Vec3::sZero()); outContact.mSurfaceNormal = inCollector.GetContext()->GetWorldSpaceSurfaceNormal(inResult.mSubShapeID2, inResult.mContactPointOn2); if (outContact.mContactNormal.Dot(outContact.mSurfaceNormal) < 0.0f) outContact.mSurfaceNormal = -outContact.mSurfaceNormal; // Flip surface normal if we're hitting a back face if (outContact.mContactNormal.Dot(inUp) > outContact.mSurfaceNormal.Dot(inUp)) outContact.mSurfaceNormal = outContact.mContactNormal; // Replace surface normal with contact normal if the contact normal is pointing more upwards outContact.mDistance = -inResult.mPenetrationDepth; outContact.mBodyB = inResult.mBodyID2; outContact.mSubShapeIDB = inResult.mSubShapeID2; outContact.mMotionTypeB = inBody.GetMotionType(); outContact.mUserData = inBody.GetUserData(); outContact.mMaterial = inCollector.GetContext()->GetMaterial(inResult.mSubShapeID2); } void CharacterVirtual::ContactCollector::AddHit(const CollideShapeResult &inResult) { BodyLockRead lock(mSystem->GetBodyLockInterface(), inResult.mBodyID2); if (lock.SucceededAndIsInBroadPhase()) { const Body &body = lock.GetBody(); mContacts.emplace_back(); Contact &contact = mContacts.back(); sFillContactProperties(contact, body, mUp, *this, inResult); contact.mFraction = 0.0f; // Protection from excess of contact points if (mContacts.size() == mMaxHits) ForceEarlyOut(); } } void CharacterVirtual::ContactCastCollector::AddHit(const ShapeCastResult &inResult) { if (inResult.mFraction > 0.0f // Ignore collisions at fraction = 0 && inResult.mPenetrationAxis.Dot(mDisplacement) > 0.0f) // Ignore penetrations that we're moving away from { // Test if this contact should be ignored for (const IgnoredContact &c : mIgnoredContacts) if (c.mBodyID == inResult.mBodyID2 && c.mSubShapeID == inResult.mSubShapeID2) return; BodyLockRead lock(mSystem->GetBodyLockInterface(), inResult.mBodyID2); if (lock.SucceededAndIsInBroadPhase()) { const Body &body = lock.GetBody(); mContacts.emplace_back(); Contact &contact = mContacts.back(); sFillContactProperties(contact, body, mUp, *this, inResult); contact.mFraction = inResult.mFraction; // Protection from excess of contact points if (mContacts.size() == mMaxHits) ForceEarlyOut(); } } } void CharacterVirtual::CheckCollision(Vec3Arg inPosition, QuatArg inRotation, Vec3Arg inMovementDirection, float inMaxSeparationDistance, const Shape *inShape, CollideShapeCollector &ioCollector, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter) const { // Query shape transform Mat44 transform = GetCenterOfMassTransform(inPosition, inRotation, inShape); // Settings for collide shape CollideShapeSettings settings; settings.mActiveEdgeMode = EActiveEdgeMode::CollideOnlyWithActive; settings.mBackFaceMode = EBackFaceMode::CollideWithBackFaces; settings.mActiveEdgeMovementDirection = inMovementDirection; settings.mMaxSeparationDistance = mCharacterPadding + inMaxSeparationDistance; // Collide shape mSystem->GetNarrowPhaseQuery().CollideShape(inShape, Vec3::sReplicate(1.0f), transform, settings, ioCollector, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); } void CharacterVirtual::GetContactsAtPosition(Vec3Arg inPosition, Vec3Arg inMovementDirection, const Shape *inShape, TempContactList &outContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter) const { // Remove previous results outContacts.clear(); // Collide shape ContactCollector collector(mSystem, mMaxNumHits, mUp, outContacts); CheckCollision(inPosition, mRotation, inMovementDirection, mPredictiveContactDistance, inShape, collector, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); // Reduce distance to contact by padding to ensure we stay away from the object by a little margin // (this will make collision detection cheaper - especially for sweep tests as they won't hit the surface if we're properly sliding) for (Contact &c : outContacts) c.mDistance -= mCharacterPadding; } void CharacterVirtual::RemoveConflictingContacts(TempContactList &ioContacts, IgnoredContactList &outIgnoredContacts) const { // Only use this algorithm if we're penetrating further than this (due to numerical precision issues we can always penetrate a little bit and we don't want to discard contacts if they just have a tiny penetration) // We do need to account for padding (see GetContactsAtPosition) that is removed from the contact distances, to compensate we add it to the cMinRequiredPenetration const float cMinRequiredPenetration = 1.25f * mCharacterPadding; // Discard conflicting penetrating contacts for (size_t c1 = 0; c1 < ioContacts.size(); c1++) { Contact &contact1 = ioContacts[c1]; if (contact1.mDistance <= -cMinRequiredPenetration) // Only for penetrations for (size_t c2 = c1 + 1; c2 < ioContacts.size(); c2++) { Contact &contact2 = ioContacts[c2]; if (contact1.mBodyB == contact2.mBodyB // Only same body && contact2.mDistance <= -cMinRequiredPenetration // Only for penetrations && contact1.mContactNormal.Dot(contact2.mContactNormal) < 0.0f) // Only opposing normals { // Discard contacts with the least amount of penetration if (contact1.mDistance < contact2.mDistance) { // Discard the 2nd contact outIgnoredContacts.emplace_back(contact2.mBodyB, contact2.mSubShapeIDB); ioContacts.erase(ioContacts.begin() + c2); c2--; } else { // Discard the first contact outIgnoredContacts.emplace_back(contact1.mBodyB, contact1.mSubShapeIDB); ioContacts.erase(ioContacts.begin() + c1); c1--; break; } } } } } bool CharacterVirtual::ValidateContact(const Contact &inContact) const { if (mListener == nullptr) return true; return mListener->OnContactValidate(this, inContact.mBodyB, inContact.mSubShapeIDB); } template inline static bool sCorrectFractionForCharacterPadding(const Shape *inShape, Mat44Arg inStart, Vec3Arg inDisplacement, const T &inPolygon, float &ioFraction) { if (inShape->GetType() == EShapeType::Convex) { // Get the support function for the shape we're casting const ConvexShape *convex_shape = static_cast(inShape); ConvexShape::SupportBuffer buffer; const ConvexShape::Support *support = convex_shape->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f)); // Cast the shape against the polygon GJKClosestPoint gjk; return gjk.CastShape(inStart, inDisplacement, cDefaultCollisionTolerance, *support, inPolygon, ioFraction); } else if (inShape->GetSubType() == EShapeSubType::RotatedTranslated) { const RotatedTranslatedShape *rt_shape = static_cast(inShape); return sCorrectFractionForCharacterPadding(rt_shape->GetInnerShape(), inStart * Mat44::sRotation(rt_shape->GetRotation()), inDisplacement, inPolygon, ioFraction); } else { JPH_ASSERT(false, "Not supported yet!"); return false; } } bool CharacterVirtual::GetFirstContactForSweep(Vec3Arg inPosition, Vec3Arg inDisplacement, Contact &outContact, const IgnoredContactList &inIgnoredContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) const { // Too small distance -> skip checking float displacement_len_sq = inDisplacement.LengthSq(); if (displacement_len_sq < 1.0e-8f) return false; // Calculate start transform Mat44 start = GetCenterOfMassTransform(inPosition, mRotation, mShape); // Settings for the cast ShapeCastSettings settings; settings.mBackFaceModeTriangles = EBackFaceMode::CollideWithBackFaces; settings.mBackFaceModeConvex = EBackFaceMode::IgnoreBackFaces; settings.mActiveEdgeMode = EActiveEdgeMode::CollideOnlyWithActive; settings.mUseShrunkenShapeAndConvexRadius = true; settings.mReturnDeepestPoint = false; // Cast shape TempContactList contacts(inAllocator); contacts.reserve(mMaxNumHits); ContactCastCollector collector(mSystem, inDisplacement, mMaxNumHits, mUp, inIgnoredContacts, contacts); ShapeCast shape_cast(mShape, Vec3::sReplicate(1.0f), start, inDisplacement); mSystem->GetNarrowPhaseQuery().CastShape(shape_cast, settings, collector, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); if (contacts.empty()) return false; // Sort the contacts on fraction QuickSort(contacts.begin(), contacts.end(), [](const Contact &inLHS, const Contact &inRHS) { return inLHS.mFraction < inRHS.mFraction; }); // Check the first contact that will make us penetrate more than the allowed tolerance bool valid_contact = false; for (const Contact &c : contacts) if (c.mDistance + c.mContactNormal.Dot(inDisplacement) < -mCollisionTolerance && ValidateContact(c)) { outContact = c; valid_contact = true; break; } if (!valid_contact) return false; // Fetch the face we're colliding with TransformedShape ts = mSystem->GetBodyInterface().GetTransformedShape(outContact.mBodyB); Shape::SupportingFace face; ts.GetSupportingFace(outContact.mSubShapeIDB, -outContact.mContactNormal, face); bool corrected = false; if (face.size() >= 2) { // Inflate the colliding face by the character padding PolygonConvexSupport polygon(face); AddConvexRadius add_cvx(polygon, mCharacterPadding); // Correct fraction to hit this inflated face instead of the inner shape corrected = sCorrectFractionForCharacterPadding(mShape, start, inDisplacement, add_cvx, outContact.mFraction); } if (!corrected) { // When there's only a single contact point or when we were unable to correct the fraction, // we can just move the fraction back so that the character and its padding don't hit the contact point anymore outContact.mFraction = max(0.0f, outContact.mFraction - mCharacterPadding / sqrt(displacement_len_sq)); } return true; } void CharacterVirtual::DetermineConstraints(TempContactList &inContacts, ConstraintList &outConstraints) const { for (Contact &c : inContacts) { Vec3 contact_velocity = c.mLinearVelocity; // Penetrating contact: Add a contact velocity that pushes the character out at the desired speed if (c.mDistance < 0.0f) contact_velocity -= c.mContactNormal * c.mDistance * mPenetrationRecoverySpeed; // Convert to a constraint outConstraints.emplace_back(); Constraint &constraint = outConstraints.back(); constraint.mContact = &c; constraint.mLinearVelocity = contact_velocity; constraint.mPlane = Plane(c.mContactNormal, c.mDistance); // Next check if the angle is too steep and if it is add an additional constraint that holds the character back if (IsSlopeTooSteep(c.mSurfaceNormal)) { // Only take planes that point up float dot = c.mSurfaceNormal.Dot(mUp); if (dot > 0.0f) { // Make horizontal normal Vec3 normal = (c.mSurfaceNormal - dot * mUp).Normalized(); // Create a secondary constraint that blocks horizontal movement outConstraints.emplace_back(); Constraint &vertical_constraint = outConstraints.back(); vertical_constraint.mContact = &c; vertical_constraint.mLinearVelocity = contact_velocity.Dot(normal) * normal; // Project the contact velocity on the new normal so that both planes push at an equal rate vertical_constraint.mPlane = Plane(normal, c.mDistance / normal.Dot(c.mSurfaceNormal)); // Calculate the distance we have to travel horizontally to hit the contact plane } } } } bool CharacterVirtual::HandleContact(Vec3Arg inVelocity, Constraint &ioConstraint, float inDeltaTime) const { Contact &contact = *ioConstraint.mContact; // Validate the contact point if (!ValidateContact(contact)) return false; // Send contact added event CharacterContactSettings settings; if (mListener != nullptr) mListener->OnContactAdded(this, contact.mBodyB, contact.mSubShapeIDB, contact.mPosition, -contact.mContactNormal, settings); contact.mCanPushCharacter = settings.mCanPushCharacter; // If body B cannot receive an impulse, we're done if (!settings.mCanReceiveImpulses || contact.mMotionTypeB != EMotionType::Dynamic) return true; // Lock the body we're colliding with BodyLockWrite lock(mSystem->GetBodyLockInterface(), contact.mBodyB); if (!lock.SucceededAndIsInBroadPhase()) return false; // Body has been removed, we should not collide with it anymore const Body &body = lock.GetBody(); // Calculate the velocity that we want to apply at B so that it will start moving at the character's speed at the contact point constexpr float cDamping = 0.9f; constexpr float cPenetrationResolution = 0.4f; Vec3 relative_velocity = inVelocity - contact.mLinearVelocity; float projected_velocity = relative_velocity.Dot(contact.mContactNormal); float delta_velocity = -projected_velocity * cDamping - min(contact.mDistance, 0.0f) * cPenetrationResolution / inDeltaTime; // Don't apply impulses if we're separating if (delta_velocity < 0.0f) return true; // Determine mass properties of the body we're colliding with const MotionProperties *motion_properties = body.GetMotionProperties(); Vec3 center_of_mass = body.GetCenterOfMassPosition(); Mat44 inverse_inertia = body.GetInverseInertia(); float inverse_mass = motion_properties->GetInverseMass(); // Calculate the inverse of the mass of body B as seen at the contact point in the direction of the contact normal Vec3 jacobian = (contact.mPosition - center_of_mass).Cross(contact.mContactNormal); float inv_effective_mass = inverse_inertia.Multiply3x3(jacobian).Dot(jacobian) + inverse_mass; // Impulse P = M dv float impulse = delta_velocity / inv_effective_mass; // Clamp the impulse according to the character strength, character strength is a force in newtons, P = F dt float max_impulse = mMaxStrength * inDeltaTime; impulse = min(impulse, max_impulse); // Calculate the world space impulse to apply Vec3 world_impulse = -impulse * contact.mContactNormal; // Cancel impulse in down direction (we apply gravity later) float impulse_dot_up = world_impulse.Dot(mUp); if (impulse_dot_up < 0.0f) world_impulse -= impulse_dot_up * mUp; // Now apply the impulse (body is already locked so we use the no-lock interface) mSystem->GetBodyInterfaceNoLock().AddImpulse(contact.mBodyB, world_impulse, contact.mPosition); return true; } void CharacterVirtual::SolveConstraints(Vec3Arg inVelocity, float inDeltaTime, float inTimeRemaining, ConstraintList &ioConstraints, IgnoredContactList &ioIgnoredContacts, float &outTimeSimulated, Vec3 &outDisplacement, TempAllocator &inAllocator #ifdef JPH_DEBUG_RENDERER , bool inDrawConstraints #endif // JPH_DEBUG_RENDERER ) const { // If there are no constraints we can immediately move to our target if (ioConstraints.empty()) { outDisplacement = inVelocity * inTimeRemaining; outTimeSimulated = inTimeRemaining; return; } // Create array that holds the constraints in order of time of impact (sort will happen later) std::vector> sorted_constraints(inAllocator); sorted_constraints.resize(ioConstraints.size()); for (size_t index = 0; index < sorted_constraints.size(); index++) sorted_constraints[index] = &ioConstraints[index]; // This is the velocity we use for the displacement, if we hit something it will be shortened Vec3 velocity = inVelocity; // Keep track of the last velocity that was applied to the character so that we can detect when the velocity reverses Vec3 last_velocity = inVelocity; // Start with no displacement outDisplacement = Vec3::sZero(); outTimeSimulated = 0.0f; // These are the contacts that we hit previously without moving a significant distance std::vector> previous_contacts(inAllocator); previous_contacts.resize(mMaxConstraintIterations); int num_previous_contacts = 0; // Loop for a max amount of iterations for (uint iteration = 0; iteration < mMaxConstraintIterations; iteration++) { // Calculate time of impact for all constraints for (Constraint &c : ioConstraints) { // Project velocity on plane direction c.mProjectedVelocity = c.mPlane.GetNormal().Dot(c.mLinearVelocity - velocity); if (c.mProjectedVelocity < 1.0e-6f) { c.mTOI = FLT_MAX; } else { // Distance to plane float dist = c.mPlane.SignedDistance(outDisplacement); if (dist - c.mProjectedVelocity * inTimeRemaining > -1.0e-4f) { // Too little penetration, accept the movement c.mTOI = FLT_MAX; } else { // Calculate time of impact c.mTOI = max(0.0f, dist / c.mProjectedVelocity); } } } // Sort constraints on proximity QuickSort(sorted_constraints.begin(), sorted_constraints.end(), [](const Constraint *inLHS, const Constraint *inRHS) { // If both constraints hit at t = 0 then order the one that will push the character furthest first // Note that because we add velocity to penetrating contacts, this will also resolve contacts that penetrate the most if (inLHS->mTOI <= 0.0f && inRHS->mTOI <= 0.0f) return inLHS->mProjectedVelocity > inRHS->mProjectedVelocity; // Then sort on time of impact if (inLHS->mTOI != inRHS->mTOI) return inLHS->mTOI < inRHS->mTOI; // As a tie breaker sort static first so it has the most influence return inLHS->mContact->mMotionTypeB > inRHS->mContact->mMotionTypeB; }); // Find the first valid constraint Constraint *constraint = nullptr; for (Constraint *c : sorted_constraints) { // Take the first contact and see if we can reach it if (c->mTOI >= inTimeRemaining) { // We can reach our goal! outDisplacement += velocity * inTimeRemaining; outTimeSimulated += inTimeRemaining; return; } // Test if this contact was discarded by the contact callback before if (c->mContact->mWasDiscarded) continue; // Check if we made contact with this before if (!c->mContact->mHadCollision) { // Handle the contact if (!HandleContact(velocity, *c, inDeltaTime)) { // Constraint should be ignored, remove it from the list c->mContact->mWasDiscarded = true; // Mark it as ignored for GetFirstContactForSweep ioIgnoredContacts.emplace_back(c->mContact->mBodyB, c->mContact->mSubShapeIDB); continue; } c->mContact->mHadCollision = true; } // Cancel velocity of constraint if it cannot push the character if (!c->mContact->mCanPushCharacter) c->mLinearVelocity = Vec3::sZero(); // We found the first constraint that we want to collide with constraint = c; break; } if (constraint == nullptr) { // All constraints were discarded, we can reach our goal! outDisplacement += velocity * inTimeRemaining; outTimeSimulated += inTimeRemaining; return; } // Move to the contact outDisplacement += velocity * constraint->mTOI; inTimeRemaining -= constraint->mTOI; outTimeSimulated += constraint->mTOI; // If there's not enough time left to be simulated, bail if (inTimeRemaining < mMinTimeRemaining) return; // If we've moved significantly, clear all previous contacts if (constraint->mTOI > 1.0e-4f) num_previous_contacts = 0; // Get the normal of the plane we're hitting Vec3 plane_normal = constraint->mPlane.GetNormal(); // Get the relative velocity between the character and the constraint Vec3 relative_velocity = velocity - constraint->mLinearVelocity; // Calculate new velocity if we cancel the relative velocity in the normal direction Vec3 new_velocity = velocity - relative_velocity.Dot(plane_normal) * plane_normal; // Find the normal of the previous contact that we will violate the most if we move in this new direction float highest_penetration = 0.0f; Constraint *other_constraint = nullptr; for (Constraint **c = previous_contacts.data(); c < previous_contacts.data() + num_previous_contacts; ++c) if (*c != constraint) { // Calculate how much we will penetrate if we move in this direction Vec3 other_normal = (*c)->mPlane.GetNormal(); float penetration = ((*c)->mLinearVelocity - new_velocity).Dot(other_normal); if (penetration > highest_penetration) { // We don't want parallel or anti-parallel normals as that will cause our cross product below to become zero. Slack is approx 10 degrees. float dot = other_normal.Dot(plane_normal); if (dot < 0.984f && dot > -0.984f) { highest_penetration = penetration; other_constraint = *c; } } } // Check if we found a 2nd constraint if (other_constraint != nullptr) { // Calculate the sliding direction and project the new velocity onto that sliding direction Vec3 other_normal = other_constraint->mPlane.GetNormal(); Vec3 slide_dir = plane_normal.Cross(other_normal).Normalized(); Vec3 velocity_in_slide_dir = new_velocity.Dot(slide_dir) * slide_dir; // Cancel the constraint velocity in the other constraint plane's direction so that we won't try to apply it again and keep ping ponging between planes constraint->mLinearVelocity -= min(0.0f, constraint->mLinearVelocity.Dot(other_normal)) * other_normal; // Cancel the other constraints velocity in this constraint plane's direction so that we won't try to apply it again and keep ping ponging between planes other_constraint->mLinearVelocity -= min(0.0f, other_constraint->mLinearVelocity.Dot(plane_normal)) * plane_normal; // Calculate the velocity of this constraint perpendicular to the slide direction Vec3 perpendicular_velocity = constraint->mLinearVelocity - constraint->mLinearVelocity.Dot(slide_dir) * slide_dir; // Calculate the velocity of the other constraint perpendicular to the slide direction Vec3 other_perpendicular_velocity = other_constraint->mLinearVelocity - other_constraint->mLinearVelocity.Dot(slide_dir) * slide_dir; // Add all components together new_velocity = velocity_in_slide_dir + perpendicular_velocity + other_perpendicular_velocity; } // Allow application to modify calculated velocity if (mListener != nullptr) mListener->OnContactSolve(this, constraint->mContact->mBodyB, constraint->mContact->mSubShapeIDB, constraint->mContact->mPosition, constraint->mContact->mContactNormal, constraint->mContact->mLinearVelocity, constraint->mContact->mMaterial, velocity, new_velocity); #ifdef JPH_DEBUG_RENDERER if (inDrawConstraints) { // Calculate where to draw Vec3 offset = mPosition + Vec3(0, 0, 2.5f * (iteration + 1)); // Draw constraint plane DebugRenderer::sInstance->DrawPlane(offset, constraint->mPlane.GetNormal(), Color::sCyan, 1.0f); // Draw 2nd constraint plane if (other_constraint != nullptr) DebugRenderer::sInstance->DrawPlane(offset, other_constraint->mPlane.GetNormal(), Color::sBlue, 1.0f); // Draw starting velocity DebugRenderer::sInstance->DrawArrow(offset, offset + velocity, Color::sGreen, 0.05f); // Draw resulting velocity DebugRenderer::sInstance->DrawArrow(offset, offset + new_velocity, Color::sRed, 0.05f); } #endif // JPH_DEBUG_RENDERER // Update the velocity velocity = new_velocity; // Add the contact to the list so that next iteration we can avoid violating it again previous_contacts[num_previous_contacts] = constraint; num_previous_contacts++; // Check early out if (constraint->mProjectedVelocity < 1.0e-8f // Constraint should not be pushing, otherwise there may be other constraints that are pushing us && velocity.LengthSq() < 1.0e-8f) // There's not enough velocity left return; // If the constraint has velocity we accept the new velocity, otherwise check that we didn't reverse velocity if (!constraint->mLinearVelocity.IsNearZero(1.0e-8f)) last_velocity = constraint->mLinearVelocity; else if (velocity.Dot(last_velocity) < 0.0f) return; } } void CharacterVirtual::UpdateSupportingContact(bool inSkipContactVelocityCheck, TempAllocator &inAllocator) { // Flag contacts as having a collision if they're close enough but ignore contacts we're moving away from. // Note that if we did MoveShape before we want to preserve any contacts that it marked as colliding for (Contact &c : mActiveContacts) if (!c.mWasDiscarded) c.mHadCollision |= c.mDistance < mCollisionTolerance && (inSkipContactVelocityCheck || c.mSurfaceNormal.Dot(mLinearVelocity - c.mLinearVelocity) <= 0.0f); // Calculate transform that takes us to character local space Mat44 inv_transform = Mat44::sInverseRotationTranslation(mRotation, mPosition); // Determine if we're supported or not int num_supported = 0; int num_sliding = 0; int num_avg_normal = 0; Vec3 avg_normal = Vec3::sZero(); Vec3 avg_velocity = Vec3::sZero(); const Contact *supporting_contact = nullptr; float max_cos_angle = -FLT_MAX; const Contact *deepest_contact = nullptr; float smallest_distance = FLT_MAX; for (const Contact &c : mActiveContacts) if (c.mHadCollision) { // Calculate the angle between the plane normal and the up direction float cos_angle = c.mSurfaceNormal.Dot(mUp); // Find the deepest contact if (c.mDistance < smallest_distance) { deepest_contact = &c; smallest_distance = c.mDistance; } // If this contact is in front of our plane, we cannot be supported by it if (mSupportingVolume.SignedDistance(inv_transform * c.mPosition) > 0.0f) continue; // Find the contact with the normal that is pointing most upwards and store it if (max_cos_angle < cos_angle) { supporting_contact = &c; max_cos_angle = cos_angle; } // Check if this is a sliding or supported contact bool is_supported = mCosMaxSlopeAngle > cNoMaxSlopeAngle || cos_angle >= mCosMaxSlopeAngle; if (is_supported) num_supported++; else num_sliding++; // If the angle between the two is less than 85 degrees we also use it to calculate the average normal if (cos_angle >= 0.08f) { avg_normal += c.mSurfaceNormal; num_avg_normal++; // For static or dynamic objects or for contacts that don't support us just take the contact velocity if (c.mMotionTypeB != EMotionType::Kinematic || !is_supported) avg_velocity += c.mLinearVelocity; else { // For keyframed objects that support us calculate the velocity at our position rather than at the contact position so that we properly follow the object // Note that we don't just take the point velocity because a point on an object with angular velocity traces an arc, // so if you just take point velocity * delta time you get an error that accumulates over time // Determine center of mass and angular velocity Vec3 angular_velocity, com; { BodyLockRead lock(mSystem->GetBodyLockInterface(), c.mBodyB); if (lock.SucceededAndIsInBroadPhase()) { const Body &body = lock.GetBody(); // Add the linear velocity to the average velocity avg_velocity += body.GetLinearVelocity(); angular_velocity = body.GetAngularVelocity(); com = body.GetCenterOfMassPosition(); } else { angular_velocity = Vec3::sZero(); com = Vec3::sZero(); } } // Get angular velocity float angular_velocity_len_sq = angular_velocity.LengthSq(); if (angular_velocity_len_sq > 1.0e-12f) { float angular_velocity_len = sqrt(angular_velocity_len_sq); // Calculate the rotation that the object will make in the time step Quat rotation = Quat::sRotation(angular_velocity / angular_velocity_len, angular_velocity_len * mLastDeltaTime); // Calculate where the new contact position will be Vec3 new_position = com + rotation * (mPosition - com); // Calculate the velocity avg_velocity += (new_position - mPosition) / mLastDeltaTime; } } } } // Take either the most supporting contact or the deepest contact const Contact *best_contact = supporting_contact != nullptr? supporting_contact : deepest_contact; // Calculate average normal and velocity if (num_avg_normal >= 1) { mGroundNormal = avg_normal.Normalized(); mGroundVelocity = avg_velocity / float(num_avg_normal); } else if (best_contact != nullptr) { mGroundNormal = best_contact->mSurfaceNormal; mGroundVelocity = best_contact->mLinearVelocity; } else { mGroundNormal = Vec3::sZero(); mGroundVelocity = Vec3::sZero(); } // Copy contact properties if (best_contact != nullptr) { mGroundBodyID = best_contact->mBodyB; mGroundBodySubShapeID = best_contact->mSubShapeIDB; mGroundPosition = best_contact->mPosition; mGroundMaterial = best_contact->mMaterial; mGroundUserData = best_contact->mUserData; } else { mGroundBodyID = BodyID(); mGroundBodySubShapeID = SubShapeID(); mGroundPosition = Vec3::sZero(); mGroundMaterial = PhysicsMaterial::sDefault; mGroundUserData = 0; } // Determine ground state if (num_supported > 0) { // We made contact with something that supports us mGroundState = EGroundState::OnGround; } else if (num_sliding > 0) { // If we're sliding we may actually be standing on multiple sliding contacts in such a way that we can't slide off, in this case we're also supported // Convert the contacts into constraints TempContactList contacts(mActiveContacts.begin(), mActiveContacts.end(), inAllocator); ConstraintList constraints(inAllocator); constraints.reserve(contacts.size() * 2); DetermineConstraints(contacts, constraints); // Solve the displacement using these constraints, this is used to check if we didn't move at all because we are supported Vec3 displacement; float time_simulated; IgnoredContactList ignored_contacts(inAllocator); ignored_contacts.reserve(contacts.size()); SolveConstraints(-mUp, 1.0f, 1.0f, constraints, ignored_contacts, time_simulated, displacement, inAllocator); // If we're blocked then we're supported, otherwise we're sliding float min_required_displacement_sq = Square(0.6f * mLastDeltaTime); if (time_simulated < 0.001f || displacement.LengthSq() < min_required_displacement_sq) mGroundState = EGroundState::OnGround; else mGroundState = EGroundState::OnSteepGround; } else { // Not supported by anything mGroundState = best_contact != nullptr? EGroundState::NotSupported : EGroundState::InAir; } } void CharacterVirtual::StoreActiveContacts(const TempContactList &inContacts, TempAllocator &inAllocator) { mActiveContacts.assign(inContacts.begin(), inContacts.end()); UpdateSupportingContact(true, inAllocator); } void CharacterVirtual::MoveShape(Vec3 &ioPosition, Vec3Arg inVelocity, float inDeltaTime, ContactList *outActiveContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator #ifdef JPH_DEBUG_RENDERER , bool inDrawConstraints #endif // JPH_DEBUG_RENDERER ) const { Vec3 movement_direction = inVelocity.NormalizedOr(Vec3::sZero()); float time_remaining = inDeltaTime; for (uint iteration = 0; iteration < mMaxCollisionIterations && time_remaining >= mMinTimeRemaining; iteration++) { // Determine contacts in the neighborhood TempContactList contacts(inAllocator); contacts.reserve(mMaxNumHits); GetContactsAtPosition(ioPosition, movement_direction, mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); // Remove contacts with the same body that have conflicting normals IgnoredContactList ignored_contacts(inAllocator); ignored_contacts.reserve(contacts.size()); RemoveConflictingContacts(contacts, ignored_contacts); // Convert contacts into constraints ConstraintList constraints(inAllocator); constraints.reserve(contacts.size() * 2); DetermineConstraints(contacts, constraints); #ifdef JPH_DEBUG_RENDERER bool draw_constraints = inDrawConstraints && iteration == 0; if (draw_constraints) { for (const Constraint &c : constraints) { // Draw contact point DebugRenderer::sInstance->DrawMarker(c.mContact->mPosition, Color::sYellow, 0.05f); Vec3 dist_to_plane = -c.mPlane.GetConstant() * c.mPlane.GetNormal(); // Draw arrow towards surface that we're hitting DebugRenderer::sInstance->DrawArrow(c.mContact->mPosition, c.mContact->mPosition - dist_to_plane, Color::sYellow, 0.05f); // Draw plane around the player position indicating the space that we can move DebugRenderer::sInstance->DrawPlane(mPosition + dist_to_plane, c.mPlane.GetNormal(), Color::sCyan, 1.0f); DebugRenderer::sInstance->DrawArrow(mPosition + dist_to_plane, mPosition + dist_to_plane + c.mContact->mSurfaceNormal, Color::sRed, 0.05f); } } #endif // JPH_DEBUG_RENDERER // Solve the displacement using these constraints Vec3 displacement; float time_simulated; SolveConstraints(inVelocity, inDeltaTime, time_remaining, constraints, ignored_contacts, time_simulated, displacement, inAllocator #ifdef JPH_DEBUG_RENDERER , draw_constraints #endif // JPH_DEBUG_RENDERER ); // Store the contacts now that the colliding ones have been marked if (outActiveContacts != nullptr) outActiveContacts->assign(contacts.begin(), contacts.end()); // Do a sweep to test if the path is really unobstructed Contact cast_contact; if (GetFirstContactForSweep(ioPosition, displacement, cast_contact, ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator)) { displacement *= cast_contact.mFraction; time_simulated *= cast_contact.mFraction; } // Update the position ioPosition += displacement; time_remaining -= time_simulated; // If the displacement during this iteration was too small we assume we cannot further progress this update if (displacement.LengthSq() < 1.0e-8f) break; } } Vec3 CharacterVirtual::CancelVelocityTowardsSteepSlopes(Vec3Arg inDesiredVelocity) const { // If we're not pushing against a steep slope, return the desired velocity // Note: This is important as WalkStairs overrides the ground state to OnGround when its first check fails but the second succeeds if (mGroundState == CharacterVirtual::EGroundState::OnGround || mGroundState == CharacterVirtual::EGroundState::InAir) return inDesiredVelocity; Vec3 desired_velocity = inDesiredVelocity; for (const Contact &c : mActiveContacts) if (c.mHadCollision && IsSlopeTooSteep(c.mSurfaceNormal)) { Vec3 normal = c.mSurfaceNormal; // Remove normal vertical component normal -= normal.Dot(mUp) * mUp; // Cancel horizontal movement in opposite direction float dot = normal.Dot(desired_velocity); if (dot < 0.0f) desired_velocity -= (dot * normal) / normal.LengthSq(); } return desired_velocity; } void CharacterVirtual::Update(float inDeltaTime, Vec3Arg inGravity, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // If there's no delta time, we don't need to do anything if (inDeltaTime <= 0.0f) return; // Remember delta time for checking if we're supported by the ground mLastDeltaTime = inDeltaTime; // Slide the shape through the world MoveShape(mPosition, mLinearVelocity, inDeltaTime, &mActiveContacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator #ifdef JPH_DEBUG_RENDERER , sDrawConstraints #endif // JPH_DEBUG_RENDERER ); // Determine the object that we're standing on UpdateSupportingContact(false, inAllocator); // If we're on the ground if (!mGroundBodyID.IsInvalid() && mMass > 0.0f) { // Add the impulse to the ground due to gravity: P = F dt = M g dt float normal_dot_gravity = mGroundNormal.Dot(inGravity); if (normal_dot_gravity < 0.0f) { Vec3 world_impulse = -(mMass * normal_dot_gravity / inGravity.Length() * inDeltaTime) * inGravity; mSystem->GetBodyInterface().AddImpulse(mGroundBodyID, world_impulse, mGroundPosition); } } } void CharacterVirtual::RefreshContacts(const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // Determine the contacts TempContactList contacts(inAllocator); contacts.reserve(mMaxNumHits); GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); StoreActiveContacts(contacts, inAllocator); } void CharacterVirtual::MoveToContact(Vec3Arg inPosition, const Contact &inContact, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // Set the new position SetPosition(inPosition); // Determine the contacts TempContactList contacts(inAllocator); contacts.reserve(mMaxNumHits + 1); // +1 because we can add one extra below GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); // Ensure that we mark inContact as colliding bool found_contact = false; for (Contact &c : contacts) if (c.mBodyB == inContact.mBodyB && c.mSubShapeIDB == inContact.mSubShapeIDB) { c.mHadCollision = true; found_contact = true; } if (!found_contact) { contacts.push_back(inContact); Contact © = contacts.back(); copy.mHadCollision = true; } StoreActiveContacts(contacts, inAllocator); JPH_ASSERT(mGroundState != EGroundState::InAir); } bool CharacterVirtual::SetShape(const Shape *inShape, float inMaxPenetrationDepth, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { if (mShape == nullptr || mSystem == nullptr) { // It hasn't been initialized yet mShape = inShape; return true; } if (inShape != mShape && inShape != nullptr) { if (inMaxPenetrationDepth < FLT_MAX) { // Check collision around the new shape TempContactList contacts(inAllocator); contacts.reserve(mMaxNumHits); GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), inShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter); // Test if this results in penetration, if so cancel the transition for (const Contact &c : contacts) if (c.mDistance < -inMaxPenetrationDepth) return false; StoreActiveContacts(contacts, inAllocator); } // Set new shape mShape = inShape; } return mShape == inShape; } bool CharacterVirtual::CanWalkStairs(Vec3Arg inLinearVelocity) const { // We can only walk stairs if we're supported if (!IsSupported()) return false; // Check if there's enough horizontal velocity to trigger a stair walk Vec3 horizontal_velocity = inLinearVelocity - inLinearVelocity.Dot(mUp) * mUp; if (horizontal_velocity.IsNearZero(1.0e-6f)) return false; // Check contacts for steep slopes for (const Contact &c : mActiveContacts) if (c.mHadCollision && c.mSurfaceNormal.Dot(horizontal_velocity - c.mLinearVelocity) < 0.0f // Pushing into the contact && IsSlopeTooSteep(c.mSurfaceNormal)) // Slope too steep return true; return false; } bool CharacterVirtual::WalkStairs(float inDeltaTime, Vec3Arg inStepUp, Vec3Arg inStepForward, Vec3Arg inStepForwardTest, Vec3Arg inStepDownExtra, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // Move up Vec3 up = inStepUp; Contact contact; IgnoredContactList dummy_ignored_contacts(inAllocator); if (GetFirstContactForSweep(mPosition, up, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator)) { if (contact.mFraction < 1.0e-6f) return false; // No movement, cancel // Limit up movement to the first contact point up *= contact.mFraction; } Vec3 up_position = mPosition + up; #ifdef JPH_DEBUG_RENDERER // Draw sweep up if (sDrawWalkStairs) DebugRenderer::sInstance->DrawArrow(mPosition, up_position, Color::sWhite, 0.01f); #endif // JPH_DEBUG_RENDERER // Horizontal movement Vec3 new_position = up_position; MoveShape(new_position, inStepForward / inDeltaTime, inDeltaTime, nullptr, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); float horizontal_movement_sq = (new_position - up_position).LengthSq(); if (horizontal_movement_sq < 1.0e-8f) return false; // No movement, cancel #ifdef JPH_DEBUG_RENDERER // Draw horizontal sweep if (sDrawWalkStairs) DebugRenderer::sInstance->DrawArrow(up_position, new_position, Color::sWhite, 0.01f); #endif // JPH_DEBUG_RENDERER // Move down towards the floor. // Note that we travel the same amount down as we travelled up with the character padding and the specified extra // If we don't add the character padding, we may miss the floor (note that GetFirstContactForSweep will subtract the padding when it finds a hit) Vec3 down = -up - mCharacterPadding * mUp + inStepDownExtra; if (!GetFirstContactForSweep(new_position, down, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator)) return false; // No floor found, we're in mid air, cancel stair walk #ifdef JPH_DEBUG_RENDERER // Draw sweep down if (sDrawWalkStairs) { Vec3 debug_pos = new_position + contact.mFraction * down; DebugRenderer::sInstance->DrawArrow(new_position, debug_pos, Color::sWhite, 0.01f); DebugRenderer::sInstance->DrawArrow(contact.mPosition, contact.mPosition + contact.mSurfaceNormal, Color::sWhite, 0.01f); mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(debug_pos, mRotation, mShape), Vec3::sReplicate(1.0f), Color::sWhite, false, true); } #endif // JPH_DEBUG_RENDERER // Test for floor that will support the character if (IsSlopeTooSteep(contact.mSurfaceNormal)) { // If no test position was provided, we cancel the stair walk if (inStepForwardTest.IsNearZero()) return false; // Delta time may be very small, so it may be that we hit the edge of a step and the normal is too horizontal. // In order to judge if the floor is flat further along the sweep, we test again for a floor at inStepForwardTest // and check if the normal is valid there. Vec3 test_position = up_position; MoveShape(test_position, inStepForwardTest / inDeltaTime, inDeltaTime, nullptr, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); float test_horizontal_movement_sq = (test_position - up_position).LengthSq(); if (test_horizontal_movement_sq <= horizontal_movement_sq + 1.0e-8f) return false; // We didn't move any further than in the previous test #ifdef JPH_DEBUG_RENDERER // Draw 2nd sweep horizontal if (sDrawWalkStairs) DebugRenderer::sInstance->DrawArrow(up_position, test_position, Color::sCyan, 0.01f); #endif // JPH_DEBUG_RENDERER // Then sweep down Contact test_contact; if (!GetFirstContactForSweep(test_position, down, test_contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator)) return false; #ifdef JPH_DEBUG_RENDERER // Draw 2nd sweep down if (sDrawWalkStairs) { Vec3 debug_pos = test_position + test_contact.mFraction * down; DebugRenderer::sInstance->DrawArrow(test_position, debug_pos, Color::sCyan, 0.01f); DebugRenderer::sInstance->DrawArrow(test_contact.mPosition, test_contact.mPosition + test_contact.mSurfaceNormal, Color::sCyan, 0.01f); mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(debug_pos, mRotation, mShape), Vec3::sReplicate(1.0f), Color::sCyan, false, true); } #endif // JPH_DEBUG_RENDERER if (IsSlopeTooSteep(test_contact.mSurfaceNormal)) return false; } // Calculate new down position down *= contact.mFraction; new_position += down; // Move the character to the new location MoveToContact(new_position, contact, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); // Override ground state to 'on ground', it is possible that the contact normal is too steep, but in this case the inStepForwardTest has found a contact normal that is not too steep mGroundState = EGroundState::OnGround; return true; } bool CharacterVirtual::StickToFloor(Vec3Arg inStepDown, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // Try to find the floor Contact contact; IgnoredContactList dummy_ignored_contacts(inAllocator); if (!GetFirstContactForSweep(mPosition, inStepDown, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator)) return false; // If no floor found, don't update our position // Calculate new position Vec3 new_position = mPosition + contact.mFraction * inStepDown; #ifdef JPH_DEBUG_RENDERER // Draw sweep down if (sDrawStickToFloor) { DebugRenderer::sInstance->DrawArrow(mPosition, new_position, Color::sOrange, 0.01f); mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(new_position, mRotation, mShape), Vec3::sReplicate(1.0f), Color::sOrange, false, true); } #endif // JPH_DEBUG_RENDERER // Move the character to the new location MoveToContact(new_position, contact, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); return true; } void CharacterVirtual::ExtendedUpdate(float inDeltaTime, Vec3Arg inGravity, const ExtendedUpdateSettings &inSettings, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, TempAllocator &inAllocator) { // Update the velocity Vec3 desired_velocity = mLinearVelocity; mLinearVelocity = CancelVelocityTowardsSteepSlopes(desired_velocity); // Remember old position Vec3 old_position = mPosition; // Track if on ground before the update bool ground_to_air = IsSupported(); // Update the character position (instant, do not have to wait for physics update) Update(inDeltaTime, inGravity, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); // ... and that we got into air after if (IsSupported()) ground_to_air = false; // If stick to floor enabled and we're going from supported to not supported if (ground_to_air && !inSettings.mStickToFloorStepDown.IsNearZero()) { // If we're not moving up, stick to the floor float velocity = (mPosition - old_position).Dot(mUp) / inDeltaTime; if (velocity <= 1.0e-6f) StickToFloor(inSettings.mStickToFloorStepDown, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); } // If walk stairs enabled if (!inSettings.mWalkStairsStepUp.IsNearZero()) { // Calculate how much we wanted to move horizontally Vec3 desired_horizontal_step = desired_velocity * inDeltaTime; desired_horizontal_step -= desired_horizontal_step.Dot(mUp) * mUp; float desired_horizontal_step_len = desired_horizontal_step.Length(); if (desired_horizontal_step_len > 0.0f) { // Calculate how much we moved horizontally Vec3 achieved_horizontal_step = mPosition - old_position; achieved_horizontal_step -= achieved_horizontal_step.Dot(mUp) * mUp; // Only count movement in the direction of the desired movement // (otherwise we find it ok if we're sliding downhill while we're trying to climb uphill) Vec3 step_forward_normalized = desired_horizontal_step / desired_horizontal_step_len; achieved_horizontal_step = max(0.0f, achieved_horizontal_step.Dot(step_forward_normalized)) * step_forward_normalized; float achieved_horizontal_step_len = achieved_horizontal_step.Length(); // If we didn't move as far as we wanted and we're against a slope that's too steep if (achieved_horizontal_step_len + 1.0e-4f < desired_horizontal_step_len && CanWalkStairs(desired_velocity)) { // Calculate how much we should step forward // Note that we clamp the step forward to a minimum distance. This is done because at very high frame rates the delta time // may be very small, causing a very small step forward. If the step becomes small enough, we may not move far enough // horizontally to actually end up at the top of the step. Vec3 step_forward = step_forward_normalized * max(inSettings.mWalkStairsMinStepForward, desired_horizontal_step_len - achieved_horizontal_step_len); // Calculate how far to scan ahead for a floor. This is only used in case the floor normal at step_forward is too steep. // In that case an additional check will be performed at this distance to check if that normal is not too steep. // Start with the ground normal in the horizontal plane and normalizing it Vec3 step_forward_test = -mGroundNormal; step_forward_test -= step_forward_test.Dot(mUp) * mUp; step_forward_test = step_forward_test.NormalizedOr(step_forward_normalized); // If this normalized vector and the character forward vector is bigger than a preset angle, we use the character forward vector instead of the ground normal // to do our forward test if (step_forward_test.Dot(step_forward_normalized) < inSettings.mWalkStairsCosAngleForwardContact) step_forward_test = step_forward_normalized; // Calculate the correct magnitude for the test vector step_forward_test *= inSettings.mWalkStairsStepForwardTest; WalkStairs(inDeltaTime, inSettings.mWalkStairsStepUp, step_forward, step_forward_test, inSettings.mWalkStairsStepDownExtra, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inAllocator); } } } } void CharacterVirtual::SaveState(StateRecorder &inStream) const { CharacterBase::SaveState(inStream); inStream.Write(mPosition); inStream.Write(mRotation); inStream.Write(mLinearVelocity); } void CharacterVirtual::RestoreState(StateRecorder &inStream) { CharacterBase::RestoreState(inStream); inStream.Read(mPosition); inStream.Read(mRotation); inStream.Read(mLinearVelocity); } JPH_NAMESPACE_END