// SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include JPH_SUPPRESS_WARNINGS_STD_BEGIN #include JPH_SUPPRESS_WARNINGS_STD_END JPH_NAMESPACE_BEGIN template using Deque = std::deque>; /// Conversion algorithm that converts an AABB tree to an optimized binary buffer template class AABBTreeToBuffer { public: /// Header for the tree using NodeHeader = typename NodeCodec::Header; /// Size in bytes of the header of the tree static const int HeaderSize = NodeCodec::HeaderSize; /// Maximum number of children per node in the tree static const int NumChildrenPerNode = NodeCodec::NumChildrenPerNode; /// Header for the triangles using TriangleHeader = typename TriangleCodec::TriangleHeader; /// Size in bytes of the header for the triangles static const int TriangleHeaderSize = TriangleCodec::TriangleHeaderSize; /// Convert AABB tree. Returns false if failed. bool Convert(const VertexList &inVertices, const AABBTreeBuilder::Node *inRoot, const char *&outError) { const typename NodeCodec::EncodingContext node_ctx; typename TriangleCodec::EncodingContext tri_ctx(inVertices); // Estimate the amount of memory required uint tri_count = inRoot->GetTriangleCountInTree(); uint node_count = inRoot->GetNodeCount(); uint nodes_size = node_ctx.GetPessimisticMemoryEstimate(node_count); uint total_size = HeaderSize + TriangleHeaderSize + nodes_size + tri_ctx.GetPessimisticMemoryEstimate(tri_count); mTree.reserve(total_size); // Reset counters mNodesSize = 0; // Add headers NodeHeader *header = HeaderSize > 0? mTree.Allocate() : nullptr; TriangleHeader *triangle_header = TriangleHeaderSize > 0? mTree.Allocate() : nullptr; struct NodeData { const AABBTreeBuilder::Node * mNode = nullptr; // Node that this entry belongs to Vec3 mNodeBoundsMin; // Quantized node bounds Vec3 mNodeBoundsMax; uint mNodeStart = uint(-1); // Start of node in mTree uint mTriangleStart = uint(-1); // Start of the triangle data in mTree uint mNumChildren = 0; // Number of children uint mChildNodeStart[NumChildrenPerNode]; // Start of the children of the node in mTree uint mChildTrianglesStart[NumChildrenPerNode]; // Start of the triangle data in mTree uint * mParentChildNodeStart = nullptr; // Where to store mNodeStart (to patch mChildNodeStart of my parent) uint * mParentTrianglesStart = nullptr; // Where to store mTriangleStart (to patch mChildTrianglesStart of my parent) }; Deque to_process; Deque to_process_triangles; Array node_list; node_list.reserve(node_count); // Needed to ensure that array is not reallocated, so we can keep pointers in the array NodeData root; root.mNode = inRoot; root.mNodeBoundsMin = inRoot->mBounds.mMin; root.mNodeBoundsMax = inRoot->mBounds.mMax; node_list.push_back(root); to_process.push_back(&node_list.back()); // Child nodes out of loop so we don't constantly realloc it Array child_nodes; child_nodes.reserve(NumChildrenPerNode); for (;;) { while (!to_process.empty()) { // Get the next node to process NodeData *node_data = to_process.back(); to_process.pop_back(); // Due to quantization box could have become bigger, not smaller JPH_ASSERT(AABox(node_data->mNodeBoundsMin, node_data->mNodeBoundsMax).Contains(node_data->mNode->mBounds), "AABBTreeToBuffer: Bounding box became smaller!"); // Collect the first NumChildrenPerNode sub-nodes in the tree child_nodes.clear(); // Won't free the memory node_data->mNode->GetNChildren(NumChildrenPerNode, child_nodes); node_data->mNumChildren = (uint)child_nodes.size(); // Fill in default child bounds Vec3 child_bounds_min[NumChildrenPerNode], child_bounds_max[NumChildrenPerNode]; for (size_t i = 0; i < NumChildrenPerNode; ++i) if (i < child_nodes.size()) { child_bounds_min[i] = child_nodes[i]->mBounds.mMin; child_bounds_max[i] = child_nodes[i]->mBounds.mMax; } else { child_bounds_min[i] = Vec3::sZero(); child_bounds_max[i] = Vec3::sZero(); } // Start a new node uint old_size = (uint)mTree.size(); node_data->mNodeStart = node_ctx.NodeAllocate(node_data->mNode, node_data->mNodeBoundsMin, node_data->mNodeBoundsMax, child_nodes, child_bounds_min, child_bounds_max, mTree, outError); if (node_data->mNodeStart == uint(-1)) return false; mNodesSize += (uint)mTree.size() - old_size; if (node_data->mNode->HasChildren()) { // Insert in reverse order so we process left child first when taking nodes from the back for (int idx = int(child_nodes.size()) - 1; idx >= 0; --idx) { // Due to quantization box could have become bigger, not smaller JPH_ASSERT(AABox(child_bounds_min[idx], child_bounds_max[idx]).Contains(child_nodes[idx]->mBounds), "AABBTreeToBuffer: Bounding box became smaller!"); // Add child to list of nodes to be processed NodeData child; child.mNode = child_nodes[idx]; child.mNodeBoundsMin = child_bounds_min[idx]; child.mNodeBoundsMax = child_bounds_max[idx]; child.mParentChildNodeStart = &node_data->mChildNodeStart[idx]; child.mParentTrianglesStart = &node_data->mChildTrianglesStart[idx]; NodeData *old = &node_list[0]; node_list.push_back(child); if (old != &node_list[0]) { outError = "Internal Error: Array reallocated, memory corruption!"; return false; } // Store triangles in separate list so we process them last if (node_list.back().mNode->HasChildren()) to_process.push_back(&node_list.back()); else to_process_triangles.push_back(&node_list.back()); } } else { // Add triangles node_data->mTriangleStart = tri_ctx.Pack(node_data->mNode->mTriangles, mTree, outError); if (node_data->mTriangleStart == uint(-1)) return false; } // Patch offset into parent if (node_data->mParentChildNodeStart != nullptr) { *node_data->mParentChildNodeStart = node_data->mNodeStart; *node_data->mParentTrianglesStart = node_data->mTriangleStart; } } // If we've got triangles to process, loop again with just the triangles if (to_process_triangles.empty()) break; else to_process.swap(to_process_triangles); } // Finalize all nodes for (NodeData &n : node_list) if (!node_ctx.NodeFinalize(n.mNode, n.mNodeStart, n.mNumChildren, n.mChildNodeStart, n.mChildTrianglesStart, mTree, outError)) return false; // Finalize the triangles tri_ctx.Finalize(inVertices, triangle_header, mTree); // Validate that we reserved enough memory if (nodes_size < mNodesSize) { outError = "Internal Error: Not enough memory reserved for nodes!"; return false; } if (total_size < (uint)mTree.size()) { outError = "Internal Error: Not enough memory reserved for triangles!"; return false; } // Finalize the nodes if (!node_ctx.Finalize(header, inRoot, node_list[0].mNodeStart, node_list[0].mTriangleStart, outError)) return false; // Shrink the tree, this will invalidate the header and triangle_header variables mTree.shrink_to_fit(); return true; } /// Get resulting data inline const ByteBuffer & GetBuffer() const { return mTree; } /// Get resulting data inline ByteBuffer & GetBuffer() { return mTree; } /// Get header for tree inline const NodeHeader * GetNodeHeader() const { return mTree.Get(0); } /// Get header for triangles inline const TriangleHeader * GetTriangleHeader() const { return mTree.Get(HeaderSize); } /// Get root of resulting tree inline const void * GetRoot() const { return mTree.Get(HeaderSize + TriangleHeaderSize); } private: ByteBuffer mTree; ///< Resulting tree structure uint mNodesSize; ///< Size in bytes of the nodes in the buffer }; JPH_NAMESPACE_END