// SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include "UnitTestFramework.h" #include #include #include TEST_SUITE("QuatTests") { TEST_CASE("TestQuatEqual") { CHECK(Quat(1, 2, 3, 4) == Quat(1, 2, 3, 4)); CHECK(Quat(1, 2, 3, 4) != Quat(0, 2, 3, 4)); CHECK(Quat(1, 2, 3, 4) != Quat(1, 0, 3, 4)); CHECK(Quat(1, 2, 3, 4) != Quat(1, 2, 0, 4)); CHECK(Quat(1, 2, 3, 4) != Quat(1, 2, 3, 0)); } TEST_CASE("TestQuatZero") { Quat zero = Quat::sZero(); CHECK(zero == Quat(0, 0, 0, 0)); } TEST_CASE("TestQuatIdentity") { Quat identity = Quat::sIdentity(); CHECK_APPROX_EQUAL(identity.GetX(), 0.0f); CHECK_APPROX_EQUAL(identity.GetY(), 0.0f); CHECK_APPROX_EQUAL(identity.GetZ(), 0.0f); CHECK_APPROX_EQUAL(identity.GetW(), 1.0f); } TEST_CASE("TestQuatIsNaN") { CHECK(Quat(numeric_limits::quiet_NaN(), 0, 0, 0).IsNaN()); CHECK(Quat(0, numeric_limits::quiet_NaN(), 0, 0).IsNaN()); CHECK(Quat(0, 0, numeric_limits::quiet_NaN(), 0).IsNaN()); CHECK(Quat(0, 0, 0, numeric_limits::quiet_NaN()).IsNaN()); } TEST_CASE("TestQuatOperators") { CHECK(-Quat(1, 2, 3, 4) == Quat(-1, -2, -3, -4)); CHECK(Quat(1, 2, 3, 4) + Quat(5, 6, 7, 8) == Quat(6, 8, 10, 12)); CHECK(Quat(5, 6, 7, 8) - Quat(4, 3, 2, 1) == Quat(1, 3, 5, 7)); CHECK(Quat(1, 2, 3, 4) * 5.0f == Quat(5, 10, 15, 20)); CHECK(5.0f * Quat(1, 2, 3, 4) == Quat(5, 10, 15, 20)); CHECK(Quat(2, 4, 6, 8) / 2.0f == Quat(1, 2, 3, 4)); } TEST_CASE("TestQuatPerpendicular") { Quat q1(1, 2, 3, 4); CHECK(q1.GetPerpendicular().Dot(q1) == 0.0f); Quat q2(-5, 4, -3, 2); CHECK(q2.GetPerpendicular().Dot(q2) == 0.0f); } TEST_CASE("TestQuatNormalized") { CHECK(Quat(1, 0, 0, 0).IsNormalized()); CHECK(Quat(-0.7071067f, 0.7071067f, 0, 0).IsNormalized()); CHECK(Quat(0.5773502f, -0.5773502f, 0.5773502f, 0).IsNormalized()); CHECK(Quat(0.5f, -0.5f, 0.5f, -0.5f).IsNormalized()); CHECK(!Quat(2, 0, 0, 0).IsNormalized()); CHECK(!Quat(0, 2, 0, 0).IsNormalized()); CHECK(!Quat(0, 0, 2, 0).IsNormalized()); CHECK(!Quat(0, 0, 0, 2).IsNormalized()); } TEST_CASE("TestQuatConvertMatrix") { UnitTestRandom random; uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); for (int i = 0; i < 1000; ++i) { Vec3 axis = Vec3::sRandom(random); float angle = zero_to_two_pi(random); Mat44 m1 = Mat44::sRotation(axis, angle); Quat q1 = m1.GetQuaternion(); Quat q2 = Quat::sRotation(axis, angle); CHECK_APPROX_EQUAL(q1, q2); Mat44 m2 = Mat44::sRotation(q2); CHECK_APPROX_EQUAL(m1, m2); } } TEST_CASE("TestQuatMultiplyVec3") { UnitTestRandom random; uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); for (int i = 0; i < 1000; ++i) { Vec3 axis = Vec3::sRandom(random); float angle = zero_to_two_pi(random); Mat44 m1 = Mat44::sRotation(axis, angle); Quat q1 = Quat::sRotation(axis, angle); Vec3 rv = 10.0f * Vec3::sRandom(random); Vec3 r1 = m1 * rv; Vec3 r2 = q1 * rv; CHECK_APPROX_EQUAL(r1, r2, 1.0e-5f); } } TEST_CASE("TestQuatRotateAxisXYZ") { UnitTestRandom random; uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); for (int i = 0; i < 1000; ++i) { Vec3 axis = Vec3::sRandom(random); float angle = zero_to_two_pi(random); Quat q1 = Quat::sRotation(axis, angle); Vec3 r1 = q1 * Vec3::sAxisX(); Vec3 r2 = q1.RotateAxisX(); CHECK_APPROX_EQUAL(r1, r2, 1.0e-5f); r1 = q1 * Vec3::sAxisY(); r2 = q1.RotateAxisY(); CHECK_APPROX_EQUAL(r1, r2, 1.0e-5f); r1 = q1 * Vec3::sAxisZ(); r2 = q1.RotateAxisZ(); CHECK_APPROX_EQUAL(r1, r2, 1.0e-5f); } } TEST_CASE("TestQuatMultiplyQuat") { { // We use a right handed system, so test that: i * j = k Quat r1 = Quat(1, 0, 0, 0) * Quat(0, 1, 0, 0); Quat r2 = Quat(0, 0, 1, 0); CHECK(r1.IsClose(r2)); } { // Test: j * i = -k Quat r1 = Quat(0, 1, 0, 0) * Quat(1, 0, 0, 0); Quat r2 = Quat(0, 0, -1, 0); CHECK(r1.IsClose(r2)); } { // Test predefined multiplication Quat r1 = Quat(2, 3, 4, 1) * Quat(6, 7, 8, 5); Quat r2 = Quat(12, 30, 24, -60); CHECK(r1.IsClose(r2)); } // Compare random matrix multiplications with quaternion multiplications UnitTestRandom random; uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); for (int i = 0; i < 1000; ++i) { Vec3 axis1 = Vec3::sRandom(random); float angle1 = zero_to_two_pi(random); Quat q1 = Quat::sRotation(axis1, angle1); Mat44 m1 = Mat44::sRotation(axis1, angle1); Vec3 axis2 = Vec3::sRandom(random); float angle2 = zero_to_two_pi(random); Quat q2 = Quat::sRotation(axis2, angle2); Mat44 m2 = Mat44::sRotation(axis2, angle2); Quat r1 = q1 * q2; Quat r2 = (m1 * m2).GetQuaternion(); CHECK_APPROX_EQUAL(r1, r2); } } TEST_CASE("TestQuatRotationAxisAngle") { Mat44 r1 = Mat44::sRotation(Vec3(1, 0, 0), 0.1f * JPH_PI); Mat44 r2 = Mat44::sRotation(Quat::sRotation(Vec3(1, 0, 0), 0.1f * JPH_PI)); CHECK_APPROX_EQUAL(r1, r2); r1 = Mat44::sRotation(Vec3(0, 1, 0), 0.2f * JPH_PI); r2 = Mat44::sRotation(Quat::sRotation(Vec3(0, 1, 0), 0.2f * JPH_PI)); CHECK_APPROX_EQUAL(r1, r2); r1 = Mat44::sRotation(Vec3(0, 0, 1), 0.3f * JPH_PI); r2 = Mat44::sRotation(Quat::sRotation(Vec3(0, 0, 1), 0.3f * JPH_PI)); CHECK_APPROX_EQUAL(r1, r2); } TEST_CASE("TestQuatGetAxisAngle") { // Test identity rotation { Vec3 axis; float angle; Quat::sIdentity().GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3::sZero(), axis); CHECK_APPROX_EQUAL(0.0f, angle); } { Vec3 axis; float angle; (-Quat::sIdentity()).GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3::sZero(), axis); CHECK_APPROX_EQUAL(0.0f, angle); } // Test positive rotation Quat q1 = Quat::sRotation(Vec3(0, 1, 0), 0.2f * JPH_PI); { Vec3 axis; float angle; q1.GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, 1, 0), axis); CHECK_APPROX_EQUAL(0.2f * JPH_PI, angle, 1.0e-5f); } { Vec3 axis; float angle; (-q1).GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, 1, 0), axis); CHECK_APPROX_EQUAL(0.2f * JPH_PI, angle, 1.0e-5f); } // Test negative rotation Quat q2 = Quat::sRotation(Vec3(0, 1, 0), -0.2f * JPH_PI); { Vec3 axis; float angle; q2.GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, -1, 0), axis); CHECK_APPROX_EQUAL(0.2f * JPH_PI, angle, 1.0e-5f); } { Vec3 axis; float angle; (-q2).GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, -1, 0), axis); CHECK_APPROX_EQUAL(0.2f * JPH_PI, angle, 1.0e-5f); } // Test keeping range between [0, PI] Quat q3 = Quat::sRotation(Vec3(0, 1, 0), 1.1f * JPH_PI); { Vec3 axis; float angle; q3.GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, -1, 0), axis); CHECK_APPROX_EQUAL(0.9f * JPH_PI, angle, 1.0e-5f); } { Vec3 axis; float angle; (-q3).GetAxisAngle(axis, angle); CHECK_APPROX_EQUAL(Vec3(0, -1, 0), axis); CHECK_APPROX_EQUAL(0.9f * JPH_PI, angle, 1.0e-5f); } } TEST_CASE("TestQuatInverse") { UnitTestRandom random; uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); for (int i = 0; i < 1000; ++i) { Vec3 axis = Vec3::sRandom(random); float angle = zero_to_two_pi(random); Quat q1 = Quat::sRotation(axis, angle); Quat q2 = q1.Inversed(); CHECK_APPROX_EQUAL(Quat::sIdentity(), q1 * q2); } } TEST_CASE("TestQuatConjugate") { CHECK(Quat(1, 2, 3, 4).Conjugated() == Quat(-1, -2, -3, 4)); CHECK(Quat(-1, -2, -3, -4).Conjugated() == Quat(1, 2, 3, -4)); } TEST_CASE("TestQuatEnsureWPositive") { CHECK(Quat(1, -2, 3, -4).EnsureWPositive() == Quat(-1, 2, -3, 4)); CHECK(Quat(-4, 5, -6, 7).EnsureWPositive() == Quat(-4, 5, -6, 7)); CHECK(Quat(1, 2, 3, 0).EnsureWPositive() == Quat(1, 2, 3, 0)); } TEST_CASE("TestQuatStoreFloat3") { Float3 q1; Quat(0.7071067f, 0, 0, -0.7071067f).StoreFloat3(&q1); CHECK(q1 == Float3(-0.7071067f, 0, 0)); Float3 q2; Quat(0, 0.7071067f, 0, 0.7071067f).StoreFloat3(&q2); CHECK(q2 == Float3(0, 0.7071067f, 0)); Float3 q3; Quat(0, 0, 1, 0).StoreFloat3(&q3); CHECK(q3 == Float3(0, 0, 1)); } TEST_CASE("TestQuatGetTwistAxis") { Quat q1 = Quat::sRotation(Vec3::sAxisX(), DegreesToRadians(-10.0f)); Quat q2 = Quat::sRotation(Vec3::sAxisY(), DegreesToRadians(20.0f)); Quat q = q1 * q2; Quat twist1 = q.GetTwist(Vec3::sAxisX()); CHECK_APPROX_EQUAL(twist1, q1); Quat swing1 = twist1.Inversed() * q; CHECK_APPROX_EQUAL(swing1, q2); Quat twist2 = swing1.GetTwist(Vec3::sAxisY()); CHECK_APPROX_EQUAL(twist2, q2); Quat swing2 = twist2.Inversed() * swing1; CHECK_APPROX_EQUAL(swing2, Quat::sIdentity()); } TEST_CASE("TestQuatGetRotationAngle") { Quat q1 = Quat::sRotation(Vec3::sAxisX(), DegreesToRadians(-10.0f)); Quat q2 = Quat::sRotation(Vec3::sAxisY(), DegreesToRadians(20.0f)); Quat q3 = Quat::sRotation(Vec3::sAxisZ(), DegreesToRadians(-95.0f)); float a = q1.GetRotationAngle(Vec3::sAxisX()); CHECK_APPROX_EQUAL(a, DegreesToRadians(-10.0f), 1.0e-5f); a = q2.GetRotationAngle(Vec3::sAxisY()); CHECK_APPROX_EQUAL(a, DegreesToRadians(20.0f), 1.0e-5f); a = q3.GetRotationAngle(Vec3::sAxisZ()); CHECK_APPROX_EQUAL(a, DegreesToRadians(-95.0f), 1.0e-5f); a = (q1 * q2).GetRotationAngle(Vec3::sAxisX()); CHECK_APPROX_EQUAL(a, DegreesToRadians(-10.0f), 1.0e-5f); a = (q3 * q1).GetRotationAngle(Vec3::sAxisX()); CHECK_APPROX_EQUAL(a, DegreesToRadians(-10.0f), 1.0e-5f); } TEST_CASE("TestQuatGetEulerAngles") { Vec3 input(DegreesToRadians(-10.0f), DegreesToRadians(20.0f), DegreesToRadians(-95.0f)); Quat qx = Quat::sRotation(Vec3::sAxisX(), input.GetX()); Quat qy = Quat::sRotation(Vec3::sAxisY(), input.GetY()); Quat qz = Quat::sRotation(Vec3::sAxisZ(), input.GetZ()); Quat q = qz * qy * qx; Quat q2 = Quat::sEulerAngles(input); CHECK_APPROX_EQUAL(q, q2); Vec3 angles = q2.GetEulerAngles(); CHECK_APPROX_EQUAL(angles, input); } TEST_CASE("TestQuatRotationFromTo") { { Vec3 v1(10, 0, 0); Vec3 v2(20, 0, 0); Quat q = Quat::sFromTo(v1, v2); CHECK_APPROX_EQUAL(q, Quat::sIdentity()); } { Vec3 v1(10, 0, 0); Vec3 v2(0, 20, 0); Quat q = Quat::sFromTo(v1, v2); CHECK_APPROX_EQUAL(v2.Normalized(), (q * v1).Normalized()); } { Vec3 v1(10, 0, 0); Vec3 v2(-20, 0, 0); Quat q = Quat::sFromTo(v1, v2); CHECK_APPROX_EQUAL(v2.Normalized(), (q * v1).Normalized()); } } TEST_CASE("TestQuatRotationFromToRandom") { UnitTestRandom random; uniform_real_distribution one_to_ten(1.0f, 10.0f); for (int i = 0; i < 1000; ++i) { Vec3 v1 = one_to_ten(random) * Vec3::sRandom(random); Vec3 v2 = one_to_ten(random) * Vec3::sRandom(random); Quat q = Quat::sFromTo(v1, v2); Vec3 v1t = (q * v1).Normalized(); Vec3 v2t = v2.Normalized(); CHECK_APPROX_EQUAL(v2t, v1t, 1.0e-5f); } } }