123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- JPH_NAMESPACE_BEGIN
- JPH_MSVC_SUPPRESS_WARNING(4723) // potential divide by 0 - caused by line: outEffectiveMass = 1.0f / inInvEffectiveMass, note that JPH_NAMESPACE_BEGIN already pushes the warning state
- /// Class used in other constraint parts to calculate the required bias factor in the lagrange multiplier for creating springs
- class SpringPart
- {
- public:
- /// Calculate spring properties
- ///
- /// @param inDeltaTime Time step
- /// @param inInvEffectiveMass Inverse effective mass K
- /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
- /// @param inC Value of the constraint equation (C). Set to zero if you don't want to drive the constraint to zero with a spring.
- /// @param inFrequency Oscillation frequency (Hz). Set to zero if you don't want to drive the constraint to zero with a spring.
- /// @param inDamping Damping factor (0 = no damping, 1 = critical damping). Set to zero if you don't want to drive the constraint to zero with a spring.
- /// @param outEffectiveMass On return, this contains the new effective mass K^-1
- inline void CalculateSpringProperties(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inFrequency, float inDamping, float &outEffectiveMass)
- {
- outEffectiveMass = 1.0f / inInvEffectiveMass;
- // Soft constraints as per: Soft Contraints: Reinventing The Spring - Erin Catto - GDC 2011
- if (inFrequency > 0.0f)
- {
- // Calculate angular frequency
- float omega = 2.0f * JPH_PI * inFrequency;
- // Calculate spring constant k and drag constant c (page 45)
- float k = outEffectiveMass * Square(omega);
- float c = 2.0f * outEffectiveMass * inDamping * omega;
- // Note that the calculation of beta and gamma below are based on the solution of an implicit Euler integration scheme
- // This scheme is unconditionally stable but has built in damping, so even when you set the damping ratio to 0 there will still
- // be damping. See page 16 and 32.
- // Calculate softness (gamma in the slides)
- // See page 34 and note that the gamma needs to be divided by delta time since we're working with impulses rather than forces:
- // softness = 1 / (dt * (c + dt * k))
- mSoftness = 1.0f / (inDeltaTime * (c + inDeltaTime * k));
- // Calculate bias factor (baumgarte stabilization):
- // beta = dt * k / (c + dt * k) = dt * k^2 * softness
- // b = beta / dt * C = dt * k * softness * C;
- mBias = inBias + inDeltaTime * k * mSoftness * inC;
-
- // Update the effective mass, see post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354
- //
- // Newton's Law:
- // M * (v2 - v1) = J^T * lambda
- //
- // Velocity constraint with softness and Baumgarte:
- // J * v2 + softness * lambda + b = 0
- //
- // where b = beta * C / dt
- //
- // We know everything except v2 and lambda.
- //
- // First solve Newton's law for v2 in terms of lambda:
- //
- // v2 = v1 + M^-1 * J^T * lambda
- //
- // Substitute this expression into the velocity constraint:
- //
- // J * (v1 + M^-1 * J^T * lambda) + softness * lambda + b = 0
- //
- // Now collect coefficients of lambda:
- //
- // (J * M^-1 * J^T + softness) * lambda = - J * v1 - b
- //
- // Now we define:
- //
- // K = J * M^-1 * J^T + softness
- //
- // So our new effective mass is K^-1
- outEffectiveMass = 1.0f / (inInvEffectiveMass + mSoftness);
- }
- else
- {
- mSoftness = 0.0f;
- mBias = inBias;
- }
- }
- /// Returns if this spring is active
- inline bool IsActive() const
- {
- return mSoftness != 0.0f;
- }
- /// Get total bias b, including supplied bias and bias for spring: lambda = J v + b
- inline float GetBias(float inTotalLambda) const
- {
- // Remainder of post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354
- //
- // Each iteration we are not computing the whole impulse, we are computing an increment to the impulse and we are updating the velocity.
- // Also, as we solve each constraint we get a perfect v2, but then some other constraint will come along and mess it up.
- // So we want to patch up the constraint while acknowledging the accumulated impulse and the damaged velocity.
- // To help with that we use P for the accumulated impulse and lambda as the update. Mathematically we have:
- //
- // M * (v2new - v2damaged) = J^T * lambda
- // J * v2new + softness * (total_lambda + lambda) + b = 0
- //
- // If we solve this we get:
- //
- // v2new = v2damaged + M^-1 * J^T * lambda
- // J * (v2damaged + M^-1 * J^T * lambda) + softness * total_lambda + softness * lambda + b = 0
- //
- // (J * M^-1 * J^T + softness) * lambda = -(J * v2damaged + softness * total_lambda + b)
- //
- // So our lagrange multiplier becomes:
- //
- // lambda = -K^-1 (J v + softness * total_lambda + b)
- //
- // So we return the bias: softness * total_lambda + b
- return mSoftness * inTotalLambda + mBias;
- }
-
- private:
- float mBias;
- float mSoftness;
- };
- JPH_NAMESPACE_END
|