VehicleTest.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <TestFramework.h>
  5. #include <Tests/Vehicle/VehicleTest.h>
  6. #include <Jolt/Physics/Constraints/DistanceConstraint.h>
  7. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  8. #include <Jolt/Physics/Collision/Shape/ConvexHullShape.h>
  9. #include <Jolt/Physics/Collision/Shape/MeshShape.h>
  10. #include <Jolt/Physics/Collision/GroupFilterTable.h>
  11. #include <Jolt/Physics/Body/BodyCreationSettings.h>
  12. #include <Jolt/Physics/PhysicsScene.h>
  13. #include <Jolt/ObjectStream/ObjectStreamIn.h>
  14. #include <Layers.h>
  15. #include <Application/DebugUI.h>
  16. #include <Utils/Log.h>
  17. #include <Utils/AssetStream.h>
  18. #include <Renderer/DebugRendererImp.h>
  19. JPH_IMPLEMENT_RTTI_VIRTUAL(VehicleTest)
  20. {
  21. JPH_ADD_BASE_CLASS(VehicleTest, Test)
  22. }
  23. const char *VehicleTest::sScenes[] =
  24. {
  25. "Flat",
  26. "Flat With Slope",
  27. "Steep Slope",
  28. "Step",
  29. "Dynamic Step",
  30. "Playground",
  31. "Loop",
  32. #ifdef JPH_OBJECT_STREAM
  33. "Terrain1",
  34. #endif // JPH_OBJECT_STREAM
  35. };
  36. const char *VehicleTest::sSceneName = "Playground";
  37. void VehicleTest::Initialize()
  38. {
  39. if (strcmp(sSceneName, "Flat") == 0)
  40. {
  41. // Flat test floor
  42. Body &floor = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(1000.0f, 1.0f, 1000.0f), 0.0f), RVec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING));
  43. floor.SetFriction(1.0f);
  44. mBodyInterface->AddBody(floor.GetID(), EActivation::DontActivate);
  45. // Load a race track to have something to assess speed and steering behavior
  46. LoadRaceTrack("Racetracks/Zandvoort.csv");
  47. }
  48. else if (strcmp(sSceneName, "Flat With Slope") == 0)
  49. {
  50. const float cSlopeStartDistance = 100.0f;
  51. const float cSlopeLength = 100.0f;
  52. const float cSlopeAngle = DegreesToRadians(30.0f);
  53. // Flat test floor
  54. Body &floor = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(1000.0f, 1.0f, 1000.0f), 0.0f), RVec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING));
  55. floor.SetFriction(1.0f);
  56. mBodyInterface->AddBody(floor.GetID(), EActivation::DontActivate);
  57. Body &slope_up = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(25.0f, 1.0f, cSlopeLength), 0.0f), RVec3(0.0f, cSlopeLength * Sin(cSlopeAngle) - 1.0f, cSlopeStartDistance + cSlopeLength * Cos(cSlopeAngle)), Quat::sRotation(Vec3::sAxisX(), -cSlopeAngle), EMotionType::Static, Layers::NON_MOVING));
  58. slope_up.SetFriction(1.0f);
  59. mBodyInterface->AddBody(slope_up.GetID(), EActivation::DontActivate);
  60. Body &slope_down = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(25.0f, 1.0f, cSlopeLength), 0.0f), RVec3(0.0f, cSlopeLength * Sin(cSlopeAngle) - 1.0f, cSlopeStartDistance + 3.0f * cSlopeLength * Cos(cSlopeAngle)), Quat::sRotation(Vec3::sAxisX(), cSlopeAngle), EMotionType::Static, Layers::NON_MOVING));
  61. slope_down.SetFriction(1.0f);
  62. mBodyInterface->AddBody(slope_down.GetID(), EActivation::DontActivate);
  63. }
  64. else if (strcmp(sSceneName, "Steep Slope") == 0)
  65. {
  66. // Steep slope test floor (20 degrees = 36% grade)
  67. Body &floor = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(1000.0f, 1.0f, 1000.0f), 0.0f), RVec3(0.0f, -1.0f, 0.0f), Quat::sRotation(Vec3::sAxisX(), DegreesToRadians(-20.0f)), EMotionType::Static, Layers::NON_MOVING));
  68. floor.SetFriction(1.0f);
  69. mBodyInterface->AddBody(floor.GetID(), EActivation::DontActivate);
  70. }
  71. else if (strcmp(sSceneName, "Step") == 0)
  72. {
  73. // Flat test floor
  74. Body &floor = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(1000.0f, 1.0f, 1000.0f), 0.0f), RVec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING));
  75. floor.SetFriction(1.0f);
  76. mBodyInterface->AddBody(floor.GetID(), EActivation::DontActivate);
  77. // A 5cm step rotated under an angle
  78. constexpr float cStepHeight = 0.05f;
  79. Body &step = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(5.0f, 0.5f * cStepHeight, 5.0f), 0.0f), RVec3(-2.0f, 0.5f * cStepHeight, 60.0f), Quat::sRotation(Vec3::sAxisY(), -0.3f * JPH_PI), EMotionType::Static, Layers::NON_MOVING));
  80. step.SetFriction(1.0f);
  81. mBodyInterface->AddBody(step.GetID(), EActivation::DontActivate);
  82. }
  83. else if (strcmp(sSceneName, "Dynamic Step") == 0)
  84. {
  85. // Flat test floor
  86. Body &floor = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(1000.0f, 1.0f, 1000.0f), 0.0f), RVec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING));
  87. floor.SetFriction(1.0f);
  88. mBodyInterface->AddBody(floor.GetID(), EActivation::DontActivate);
  89. // A dynamic body that acts as a step to test sleeping behavior
  90. constexpr float cStepHeight = 0.05f;
  91. Body &step = *mBodyInterface->CreateBody(BodyCreationSettings(new BoxShape(Vec3(15.0f, 0.5f * cStepHeight, 15.0f), 0.0f), RVec3(-2.0f, 0.5f * cStepHeight, 30.0f), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING));
  92. step.SetFriction(1.0f);
  93. mBodyInterface->AddBody(step.GetID(), EActivation::Activate);
  94. }
  95. else if (strcmp(sSceneName, "Playground") == 0)
  96. {
  97. // Scene with hilly terrain and some objects to drive into
  98. Body &floor = CreateMeshTerrain();
  99. floor.SetFriction(1.0f);
  100. CreateBridge();
  101. CreateWall();
  102. CreateRubble();
  103. }
  104. else if (strcmp(sSceneName, "Loop") == 0)
  105. {
  106. CreateFloor();
  107. TriangleList triangles;
  108. const int cNumSegments = 100;
  109. const float cLoopWidth = 20.0f;
  110. const float cLoopRadius = 20.0f;
  111. const float cLoopThickness = 0.5f;
  112. Vec3 prev_center = Vec3::sZero();
  113. Vec3 prev_center_bottom = Vec3::sZero();
  114. for (int i = 0; i < cNumSegments; ++i)
  115. {
  116. float angle = i * 2.0f * JPH_PI / (cNumSegments - 1);
  117. Vec3 radial(0, -Cos(angle), Sin(angle));
  118. Vec3 center = Vec3(-i * cLoopWidth / (cNumSegments - 1), cLoopRadius, cLoopRadius) + cLoopRadius * radial;
  119. Vec3 half_width(0.5f * cLoopWidth, 0, 0);
  120. Vec3 center_bottom = center + cLoopThickness * radial;
  121. if (i > 0)
  122. {
  123. // Top surface
  124. triangles.push_back(Triangle(prev_center + half_width, prev_center - half_width, center - half_width));
  125. triangles.push_back(Triangle(prev_center + half_width, center - half_width, center + half_width));
  126. // Bottom surface
  127. triangles.push_back(Triangle(prev_center_bottom + half_width, center_bottom - half_width, prev_center_bottom - half_width));
  128. triangles.push_back(Triangle(prev_center_bottom + half_width, center_bottom + half_width, center_bottom - half_width));
  129. // Sides
  130. triangles.push_back(Triangle(prev_center + half_width, center + half_width, prev_center_bottom + half_width));
  131. triangles.push_back(Triangle(prev_center_bottom + half_width, center + half_width, center_bottom + half_width));
  132. triangles.push_back(Triangle(prev_center - half_width, prev_center_bottom - half_width, center - half_width));
  133. triangles.push_back(Triangle(prev_center_bottom - half_width, center_bottom - half_width, center - half_width));
  134. }
  135. prev_center = center;
  136. prev_center_bottom = center_bottom;
  137. }
  138. MeshShapeSettings mesh(triangles);
  139. mesh.SetEmbedded();
  140. Body &loop = *mBodyInterface->CreateBody(BodyCreationSettings(&mesh, RVec3::sZero(), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING));
  141. loop.SetFriction(1.0f);
  142. mBodyInterface->AddBody(loop.GetID(), EActivation::Activate);
  143. }
  144. #ifdef JPH_OBJECT_STREAM
  145. else
  146. {
  147. // Load scene
  148. Ref<PhysicsScene> scene;
  149. AssetStream stream(String(sSceneName) + ".bof", std::ios::in | std::ios::binary);
  150. if (!ObjectStreamIn::sReadObject(stream.Get(), scene))
  151. FatalError("Failed to load scene");
  152. for (BodyCreationSettings &body : scene->GetBodies())
  153. body.mObjectLayer = Layers::NON_MOVING;
  154. scene->FixInvalidScales();
  155. scene->CreateBodies(mPhysicsSystem);
  156. }
  157. #endif // JPH_OBJECT_STREAM
  158. }
  159. void VehicleTest::CreateBridge()
  160. {
  161. const int cChainLength = 20;
  162. // Build a collision group filter that disables collision between adjacent bodies
  163. Ref<GroupFilterTable> group_filter = new GroupFilterTable(cChainLength);
  164. for (CollisionGroup::SubGroupID i = 0; i < cChainLength - 1; ++i)
  165. group_filter->DisableCollision(i, i + 1);
  166. Vec3 part_half_size = Vec3(2.5f, 0.25f, 1.0f);
  167. RefConst<Shape> part_shape = new BoxShape(part_half_size);
  168. Vec3 large_part_half_size = Vec3(2.5f, 0.25f, 22.5f);
  169. RefConst<Shape> large_part_shape = new BoxShape(large_part_half_size);
  170. Quat first_part_rot = Quat::sRotation(Vec3::sAxisX(), DegreesToRadians(-10.0f));
  171. RVec3 prev_pos(-25, 7, 0);
  172. Body *prev_part = nullptr;
  173. for (int i = 0; i < cChainLength; ++i)
  174. {
  175. RVec3 pos = prev_pos + Vec3(0, 0, 2.0f * part_half_size.GetZ());
  176. Body &part = i == 0? *mBodyInterface->CreateBody(BodyCreationSettings(large_part_shape, pos - first_part_rot * Vec3(0, large_part_half_size.GetY() - part_half_size.GetY(), large_part_half_size.GetZ() - part_half_size.GetZ()), first_part_rot, EMotionType::Static, Layers::NON_MOVING))
  177. : *mBodyInterface->CreateBody(BodyCreationSettings(part_shape, pos, Quat::sIdentity(), i == 19? EMotionType::Static : EMotionType::Dynamic, i == 19? Layers::NON_MOVING : Layers::MOVING));
  178. part.SetCollisionGroup(CollisionGroup(group_filter, 1, CollisionGroup::SubGroupID(i)));
  179. part.SetFriction(1.0f);
  180. mBodyInterface->AddBody(part.GetID(), EActivation::Activate);
  181. if (prev_part != nullptr)
  182. {
  183. DistanceConstraintSettings dc;
  184. dc.mPoint1 = prev_pos + Vec3(-part_half_size.GetX(), 0, part_half_size.GetZ());
  185. dc.mPoint2 = pos + Vec3(-part_half_size.GetX(), 0, -part_half_size.GetZ());
  186. mPhysicsSystem->AddConstraint(dc.Create(*prev_part, part));
  187. dc.mPoint1 = prev_pos + Vec3(part_half_size.GetX(), 0, part_half_size.GetZ());
  188. dc.mPoint2 = pos + Vec3(part_half_size.GetX(), 0, -part_half_size.GetZ());
  189. mPhysicsSystem->AddConstraint(dc.Create(*prev_part, part));
  190. }
  191. prev_part = &part;
  192. prev_pos = pos;
  193. }
  194. }
  195. void VehicleTest::CreateWall()
  196. {
  197. RefConst<Shape> box_shape = new BoxShape(Vec3(0.5f, 0.5f, 0.5f));
  198. for (int i = 0; i < 3; ++i)
  199. for (int j = i / 2; j < 5 - (i + 1) / 2; ++j)
  200. {
  201. RVec3 position(2.0f + j * 1.0f + (i & 1? 0.5f : 0.0f), 2.0f + i * 1.0f, 10.0f);
  202. mBodyInterface->CreateAndAddBody(BodyCreationSettings(box_shape, position, Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING), EActivation::Activate);
  203. }
  204. }
  205. void VehicleTest::CreateRubble()
  206. {
  207. // Flat and light objects
  208. RefConst<Shape> box_shape = new BoxShape(Vec3(0.5f, 0.1f, 0.5f));
  209. for (int i = 0; i < 5; ++i)
  210. for (int j = 0; j < 5; ++j)
  211. {
  212. RVec3 position(-5.0f + j, 2.0f + i * 0.2f, 10.0f + 0.5f * i);
  213. mBodyInterface->CreateAndAddBody(BodyCreationSettings(box_shape, position, Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING), EActivation::Activate);
  214. }
  215. // Light convex shapes
  216. default_random_engine random;
  217. uniform_real_distribution<float> hull_size(0.2f, 0.4f);
  218. for (int i = 0; i < 10; ++i)
  219. for (int j = 0; j < 10; ++j)
  220. {
  221. // Create random points
  222. Array<Vec3> points;
  223. for (int k = 0; k < 20; ++k)
  224. points.push_back(hull_size(random) * Vec3::sRandom(random));
  225. mBodyInterface->CreateAndAddBody(BodyCreationSettings(new ConvexHullShapeSettings(points), RVec3(-5.0f + 0.5f * j, 2.0f, 15.0f + 0.5f * i), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING), EActivation::Activate);
  226. }
  227. }
  228. void VehicleTest::LoadRaceTrack(const char *inFileName)
  229. {
  230. // Open the track file
  231. AssetStream asset_stream(inFileName, std::ios::in);
  232. std::istream &stream = asset_stream.Get();
  233. // Ignore header line
  234. String line;
  235. std::getline(stream, line);
  236. // Read coordinates
  237. struct Segment
  238. {
  239. RVec3 mCenter;
  240. float mWidthLeft;
  241. float mWidthRight;
  242. };
  243. Array<Segment> segments;
  244. Real x, y;
  245. float wl, wr;
  246. char c;
  247. RVec3 track_center = RVec3::sZero();
  248. while (stream >> x >> c >> y >> c >> wl >> c >> wr)
  249. {
  250. RVec3 center(x, 0, -y);
  251. segments.push_back({ center, wl, wr });
  252. track_center += center;
  253. }
  254. if (!segments.empty())
  255. track_center /= (float)segments.size();
  256. // Convert to line segments
  257. RVec3 prev_tleft = RVec3::sZero(), prev_tright = RVec3::sZero();
  258. for (size_t i = 0; i < segments.size(); ++i)
  259. {
  260. const Segment &segment = segments[i];
  261. const Segment &next_segment = segments[(i + 1) % segments.size()];
  262. // Calculate left and right point of the track
  263. Vec3 fwd = Vec3(next_segment.mCenter - segment.mCenter);
  264. Vec3 right = fwd.Cross(Vec3::sAxisY()).Normalized();
  265. RVec3 tcenter = segment.mCenter - track_center + Vec3(0, 0.1f, 0); // Put a bit above the floor to avoid z fighting
  266. RVec3 tleft = tcenter - right * segment.mWidthLeft;
  267. RVec3 tright = tcenter + right * segment.mWidthRight;
  268. mTrackData.push_back({ tleft, tright });
  269. // Connect left and right point with the previous left and right point
  270. if (i > 0)
  271. {
  272. mTrackData.push_back({ prev_tleft, tleft });
  273. mTrackData.push_back({ prev_tright, tright });
  274. }
  275. prev_tleft = tleft;
  276. prev_tright = tright;
  277. }
  278. }
  279. void VehicleTest::PrePhysicsUpdate(const PreUpdateParams &inParams)
  280. {
  281. // Render the track
  282. for (const Line &l : mTrackData)
  283. mDebugRenderer->DrawLine(l.mStart, l.mEnd, Color::sBlack);
  284. }
  285. void VehicleTest::CreateSettingsMenu(DebugUI *inUI, UIElement *inSubMenu)
  286. {
  287. inUI->CreateTextButton(inSubMenu, "Select Scene", [this, inUI]() {
  288. UIElement *scene_name = inUI->CreateMenu();
  289. for (uint i = 0; i < size(sScenes); ++i)
  290. inUI->CreateTextButton(scene_name, sScenes[i], [this, i]() { sSceneName = sScenes[i]; RestartTest(); });
  291. inUI->ShowMenu(scene_name);
  292. });
  293. }