123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- #include <Jolt/Math/Vector.h>
- #include <Jolt/Math/Matrix.h>
- JPH_NAMESPACE_BEGIN
- /// Constrains rotation around 2 axis so that it only allows rotation around 1 axis
- ///
- /// Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.4.1
- ///
- /// Constraint equation (eq 87):
- ///
- /// \f[C = \begin{bmatrix}a_1 \cdot b_2 \\ a_1 \cdot c_2\end{bmatrix}\f]
- ///
- /// Jacobian (eq 90):
- ///
- /// \f[J = \begin{bmatrix}
- /// 0 & -b_2 \times a_1 & 0 & b_2 \times a_1 \\
- /// 0 & -c_2 \times a_1 & 0 & c2 \times a_1
- /// \end{bmatrix}\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// a1 = hinge axis on body 1.\n
- /// b2, c2 = axis perpendicular to hinge axis on body 2.\n
- /// x1, x2 = center of mass for the bodies.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// b = velocity bias.\n
- /// \f$\beta\f$ = baumgarte constant.\n
- /// E = identity matrix.
- class HingeRotationConstraintPart
- {
- public:
- using Vec2 = Vector<2>;
- using Mat22 = Matrix<2, 2>;
- private:
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, const Vec2 &inLambda) const
- {
- // Apply impulse if delta is not zero
- if (!inLambda.IsZero())
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1];
- if (ioBody1.IsDynamic())
- ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(impulse));
- if (ioBody2.IsDynamic())
- ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(impulse));
- return true;
- }
- return false;
- }
- public:
- /// Calculate properties used during the functions below
- inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2)
- {
- JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-5f));
- JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-5f));
- // Calculate hinge axis in world space
- mA1 = inWorldSpaceHingeAxis1;
- Vec3 a2 = inWorldSpaceHingeAxis2;
- float dot = mA1.Dot(a2);
- if (dot <= 1.0e-3f)
- {
- // World space axes are more than 90 degrees apart, get a perpendicular vector in the plane formed by mA1 and a2 as hinge axis until the rotation is less than 90 degrees
- Vec3 perp = a2 - dot * mA1;
- if (perp.LengthSq() < 1.0e-6f)
- {
- // mA1 ~ -a2, take random perpendicular
- perp = mA1.GetNormalizedPerpendicular();
- }
- // Blend in a little bit from mA1 so we're less than 90 degrees apart
- a2 = (0.99f * perp.Normalized() + 0.01f * mA1).Normalized();
- }
- mB2 = a2.GetNormalizedPerpendicular();
- mC2 = a2.Cross(mB2);
- // Calculate properties used during constraint solving
- mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
- mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
- mB2xA1 = mB2.Cross(mA1);
- mC2xA1 = mC2.Cross(mA1);
- // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
- Mat44 summed_inv_inertia = mInvI1 + mInvI2;
- Mat22 inv_effective_mass;
- inv_effective_mass(0, 0) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
- inv_effective_mass(0, 1) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
- inv_effective_mass(1, 0) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
- inv_effective_mass(1, 1) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
- if (!mEffectiveMass.SetInversed(inv_effective_mass))
- {
- JPH_ASSERT(false, "Determinant is zero!");
- Deactivate();
- }
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass.SetZero();
- mTotalLambda.SetZero();
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
- {
- // Calculate lagrange multiplier:
- //
- // lambda = -K^-1 (J v + b)
- Vec3 delta_ang = ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity();
- Vec2 jv;
- jv[0] = mB2xA1.Dot(delta_ang);
- jv[1] = mC2xA1.Dot(delta_ang);
- Vec2 lambda = mEffectiveMass * jv;
- // Store accumulated lambda
- mTotalLambda += lambda;
-
- return ApplyVelocityStep(ioBody1, ioBody2, lambda);
- }
- /// Iteratively update the position constraint. Makes sure C(...) = 0.
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
- {
- // Constraint needs Axis of body 1 perpendicular to both B and C from body 2 (which are both perpendicular to the Axis of body 2)
- Vec2 c;
- c[0] = mA1.Dot(mB2);
- c[1] = mA1.Dot(mC2);
- if (!c.IsZero())
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1];
- if (ioBody1.IsDynamic())
- ioBody1.SubRotationStep(mInvI1.Multiply3x3(impulse));
- if (ioBody2.IsDynamic())
- ioBody2.AddRotationStep(mInvI2.Multiply3x3(impulse));
- return true;
- }
- return false;
- }
- /// Return lagrange multiplier
- const Vec2 & GetTotalLambda() const
- {
- return mTotalLambda;
- }
-
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Vec3 mA1; ///< World space hinge axis for body 1
- Vec3 mB2; ///< World space perpendiculars of hinge axis for body 2
- Vec3 mC2;
- Mat44 mInvI1;
- Mat44 mInvI2;
- Vec3 mB2xA1;
- Vec3 mC2xA1;
- Mat22 mEffectiveMass;
- Vec2 mTotalLambda { Vec2::sZero() };
- };
- JPH_NAMESPACE_END
|