123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- JPH_NAMESPACE_BEGIN
- /// Constrains movement along 3 axis
- ///
- /// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.2.1
- ///
- /// Constraint equation (eq 45):
- ///
- /// \f[C = p_2 - p_1\f]
- ///
- /// Jacobian (transposed) (eq 47):
- ///
- /// \f[J^T = \begin{bmatrix}-E & r1x & E & -r2x^T\end{bmatrix}
- /// = \begin{bmatrix}-E^T \\ r1x^T \\ E^T \\ -r2x^T\end{bmatrix}
- /// = \begin{bmatrix}-E \\ -r1x \\ E \\ r2x\end{bmatrix}\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// p1, p2 = constraint points.\n
- /// r1 = p1 - x1.\n
- /// r2 = p2 - x2.\n
- /// r1x = 3x3 matrix for which r1x v = r1 x v (cross product).\n
- /// x1, x2 = center of mass for the bodies.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// b = velocity bias.\n
- /// \f$\beta\f$ = baumgarte constant.\n
- /// E = identity matrix.
- class PointConstraintPart
- {
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const
- {
- // Apply impulse if delta is not zero
- if (inLambda != Vec3::sZero())
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- if (ioBody1.IsDynamic())
- {
- MotionProperties *mp1 = ioBody1.GetMotionProperties();
- mp1->SubLinearVelocityStep(mp1->GetInverseMass() * inLambda);
- mp1->SubAngularVelocityStep(mInvI1_R1X * inLambda);
- }
- if (ioBody2.IsDynamic())
- {
- MotionProperties *mp2 = ioBody2.GetMotionProperties();
- mp2->AddLinearVelocityStep(mp2->GetInverseMass() * inLambda);
- mp2->AddAngularVelocityStep(mInvI2_R2X * inLambda);
- }
- return true;
- }
- return false;
- }
- public:
- /// Calculate properties used during the functions below
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inRotation1 The 3x3 rotation matrix for body 1 (translation part is ignored)
- /// @param inRotation2 The 3x3 rotation matrix for body 2 (translation part is ignored)
- /// @param inR1 Local space vector from center of mass to constraint point for body 1
- /// @param inR2 Local space vector from center of mass to constraint point for body 2
- inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2)
- {
- // Positions where the point constraint acts on (middle point between center of masses) in world space
- mR1 = inRotation1.Multiply3x3(inR1);
- mR2 = inRotation2.Multiply3x3(inR2);
- // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
- // Using: I^-1 = R * Ibody^-1 * R^T
- float summed_inv_mass;
- Mat44 inv_effective_mass;
- if (inBody1.IsDynamic())
- {
- const MotionProperties *mp1 = inBody1.GetMotionProperties();
- Mat44 invi1 = mp1->GetInverseInertiaForRotation(inRotation1);
- summed_inv_mass = mp1->GetInverseMass();
- Mat44 r1x = Mat44::sCrossProduct(mR1);
- mInvI1_R1X = invi1.Multiply3x3(r1x);
- inv_effective_mass = r1x.Multiply3x3(invi1).Multiply3x3RightTransposed(r1x);
- }
- else
- {
- JPH_IF_DEBUG(mInvI1_R1X = Mat44::sNaN();)
- summed_inv_mass = 0.0f;
- inv_effective_mass = Mat44::sZero();
- }
- if (inBody2.IsDynamic())
- {
- const MotionProperties *mp2 = inBody2.GetMotionProperties();
- Mat44 invi2 = mp2->GetInverseInertiaForRotation(inRotation2);
- summed_inv_mass += mp2->GetInverseMass();
- Mat44 r2x = Mat44::sCrossProduct(mR2);
- mInvI2_R2X = invi2.Multiply3x3(r2x);
- inv_effective_mass += r2x.Multiply3x3(invi2).Multiply3x3RightTransposed(r2x);
- }
- else
- {
- JPH_IF_DEBUG(mInvI2_R2X = Mat44::sNaN();)
- }
- inv_effective_mass += Mat44::sScale(summed_inv_mass);
- mEffectiveMass = inv_effective_mass.Inversed3x3();
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
- inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
- {
- // Calculate lagrange multiplier:
- //
- // lambda = -K^-1 (J v + b)
- Vec3 lambda = mEffectiveMass * (ioBody1.GetLinearVelocity() - mR1.Cross(ioBody1.GetAngularVelocity()) - ioBody2.GetLinearVelocity() + mR2.Cross(ioBody2.GetAngularVelocity()));
- mTotalLambda += lambda; // Store accumulated lambda
- return ApplyVelocityStep(ioBody1, ioBody2, lambda);
- }
- /// Iteratively update the position constraint. Makes sure C(...) = 0.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
- {
- Vec3 separation = (ioBody2.GetCenterOfMassPosition() + mR2 - ioBody1.GetCenterOfMassPosition() - mR1);
- if (separation != Vec3::sZero())
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- Vec3 lambda = mEffectiveMass * -inBaumgarte * separation;
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- if (ioBody1.IsDynamic())
- {
- ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * lambda);
- ioBody1.SubRotationStep(mInvI1_R1X * lambda);
- }
- if (ioBody2.IsDynamic())
- {
- ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * lambda);
- ioBody2.AddRotationStep(mInvI2_R2X * lambda);
- }
- return true;
- }
- return false;
- }
-
- /// Return lagrange multiplier
- Vec3 GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Vec3 mR1;
- Vec3 mR2;
- Mat44 mInvI1_R1X;
- Mat44 mInvI2_R2X;
- Mat44 mEffectiveMass;
- Vec3 mTotalLambda { Vec3::sZero() };
- };
- JPH_NAMESPACE_END
|