123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- JPH_NAMESPACE_BEGIN
- /// Constraint that constrains a rotation to a translation
- ///
- /// Constraint equation:
- ///
- /// C = Theta(t) - r d(t)
- ///
- /// Derivative:
- ///
- /// d/dt C = 0
- /// <=> w1 . a - r v2 . b = 0
- ///
- /// Jacobian:
- ///
- /// \f[J = \begin{bmatrix}0 & a^T & -r b^T & 0\end{bmatrix}\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// a = axis around which body 1 rotates (normalized).\n
- /// b = axis along which body 2 slides (normalized).\n
- /// Theta(t) = rotation around a of body 1.\n
- /// d(t) = distance body 2 slides.\n
- /// r = ratio between rotation and translation.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// \f$\beta\f$ = baumgarte constant.
- class RackAndPinionConstraintPart
- {
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const
- {
- // Apply impulse if delta is not zero
- if (inLambda != 0.0f)
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- ioBody1.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI1_A);
- ioBody2.GetMotionProperties()->SubLinearVelocityStep(inLambda * mRatio_InvM2_B);
- return true;
- }
- return false;
- }
- public:
- /// Calculate properties used during the functions below
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inWorldSpaceHingeAxis The axis around which body 1 rotates
- /// @param inWorldSpaceSliderAxis The axis along which body 2 slides
- /// @param inRatio The ratio between rotation and translation
- inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inWorldSpaceHingeAxis, const Body &inBody2, Vec3Arg inWorldSpaceSliderAxis, float inRatio)
- {
- JPH_ASSERT(inWorldSpaceHingeAxis.IsNormalized(1.0e-4f));
- JPH_ASSERT(inWorldSpaceSliderAxis.IsNormalized(1.0e-4f));
- // Calculate: I1^-1 a
- mInvI1_A = inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceHingeAxis);
- // Calculate: r/m2 b
- float inv_m2 = inBody2.GetMotionProperties()->GetInverseMass();
- mRatio_InvM2_B = inRatio * inv_m2 * inWorldSpaceSliderAxis;
- // K^-1 = 1 / (J M^-1 J^T) = 1 / (a^T I1^-1 a + 1/m2 * r^2 * b . b)
- mEffectiveMass = 1.0f / (inWorldSpaceHingeAxis.Dot(mInvI1_A) + inv_m2 * Square(inRatio));
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass = 0.0f;
- mTotalLambda = 0.0f;
- }
- /// Check if constraint is active
- inline bool IsActive() const
- {
- return mEffectiveMass != 0.0f;
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
- inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWorldSpaceHingeAxis The axis around which body 1 rotates
- /// @param inWorldSpaceSliderAxis The axis along which body 2 slides
- /// @param inRatio The ratio between rotation and translation
- inline bool SolveVelocityConstraint(Body &ioBody1, Vec3Arg inWorldSpaceHingeAxis, Body &ioBody2, Vec3Arg inWorldSpaceSliderAxis, float inRatio)
- {
- // Lagrange multiplier is:
- //
- // lambda = -K^-1 (J v + b)
- float lambda = mEffectiveMass * (inRatio * inWorldSpaceSliderAxis.Dot(ioBody2.GetLinearVelocity()) - inWorldSpaceHingeAxis.Dot(ioBody1.GetAngularVelocity()));
- mTotalLambda += lambda; // Store accumulated impulse
- return ApplyVelocityStep(ioBody1, ioBody2, lambda);
- }
- /// Return lagrange multiplier
- float GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Iteratively update the position constraint. Makes sure C(...) == 0.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inC Value of the constraint equation (C)
- /// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const
- {
- // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
- if (inC != 0.0f)
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- float lambda = -mEffectiveMass * inBaumgarte * inC;
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- if (ioBody1.IsDynamic())
- ioBody1.AddRotationStep(lambda * mInvI1_A);
- if (ioBody2.IsDynamic())
- ioBody2.SubPositionStep(lambda * mRatio_InvM2_B);
- return true;
- }
- return false;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Vec3 mInvI1_A;
- Vec3 mRatio_InvM2_B;
- float mEffectiveMass = 0.0f;
- float mTotalLambda = 0.0f;
- };
- JPH_NAMESPACE_END
|