SliderConstraint.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  5. #include <Jolt/Physics/Body/Body.h>
  6. #include <Jolt/ObjectStream/TypeDeclarations.h>
  7. #include <Jolt/Core/StreamIn.h>
  8. #include <Jolt/Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Jolt/Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. JPH_NAMESPACE_BEGIN
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mFrequency)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mDamping)
  27. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  28. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  29. }
  30. void SliderConstraintSettings::SetPoint(const Body &inBody1, const Body &inBody2)
  31. {
  32. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  33. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  34. Vec3 anchor;
  35. if (!inBody1.CanBeKinematicOrDynamic())
  36. anchor = inBody2.GetCenterOfMassPosition();
  37. else if (!inBody2.CanBeKinematicOrDynamic())
  38. anchor = inBody1.GetCenterOfMassPosition();
  39. else
  40. {
  41. // Otherwise use weighted anchor point towards the lightest body
  42. float inv_m1 = inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  43. float inv_m2 = inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  44. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / (inv_m1 + inv_m2);
  45. }
  46. mPoint1 = mPoint2 = anchor;
  47. }
  48. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  49. {
  50. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  51. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  52. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  53. }
  54. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  55. {
  56. ConstraintSettings::SaveBinaryState(inStream);
  57. inStream.Write(mSpace);
  58. inStream.Write(mPoint1);
  59. inStream.Write(mSliderAxis1);
  60. inStream.Write(mNormalAxis1);
  61. inStream.Write(mPoint2);
  62. inStream.Write(mSliderAxis2);
  63. inStream.Write(mNormalAxis2);
  64. inStream.Write(mLimitsMin);
  65. inStream.Write(mLimitsMax);
  66. inStream.Write(mFrequency);
  67. inStream.Write(mDamping);
  68. inStream.Write(mMaxFrictionForce);
  69. mMotorSettings.SaveBinaryState(inStream);
  70. }
  71. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  72. {
  73. ConstraintSettings::RestoreBinaryState(inStream);
  74. inStream.Read(mSpace);
  75. inStream.Read(mPoint1);
  76. inStream.Read(mSliderAxis1);
  77. inStream.Read(mNormalAxis1);
  78. inStream.Read(mPoint2);
  79. inStream.Read(mSliderAxis2);
  80. inStream.Read(mNormalAxis2);
  81. inStream.Read(mLimitsMin);
  82. inStream.Read(mLimitsMax);
  83. inStream.Read(mFrequency);
  84. inStream.Read(mDamping);
  85. inStream.Read(mMaxFrictionForce);
  86. mMotorSettings.RestoreBinaryState(inStream);
  87. }
  88. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  89. {
  90. return new SliderConstraint(inBody1, inBody2, *this);
  91. }
  92. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  93. TwoBodyConstraint(inBody1, inBody2, inSettings),
  94. mLocalSpacePosition1(inSettings.mPoint1),
  95. mLocalSpacePosition2(inSettings.mPoint2),
  96. mLocalSpaceSliderAxis1(inSettings.mSliderAxis1),
  97. mLocalSpaceNormal1(inSettings.mNormalAxis1),
  98. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  99. mMotorSettings(inSettings.mMotorSettings)
  100. {
  101. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  102. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
  103. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  104. {
  105. // If all properties were specified in world space, take them to local space now
  106. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  107. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  108. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(mLocalSpaceSliderAxis1).Normalized();
  109. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(mLocalSpaceNormal1).Normalized();
  110. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * mLocalSpacePosition2;
  111. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  112. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  113. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  114. }
  115. // Calculate 2nd local space normal
  116. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  117. // Store limits
  118. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mFrequency > 0.0f, "Better use a fixed constraint");
  119. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  120. // Store frequency and damping
  121. SetFrequency(inSettings.mFrequency);
  122. SetDamping(inSettings.mDamping);
  123. }
  124. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  125. {
  126. JPH_ASSERT(inLimitsMin <= 0.0f);
  127. JPH_ASSERT(inLimitsMax >= 0.0f);
  128. mLimitsMin = inLimitsMin;
  129. mLimitsMax = inLimitsMax;
  130. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  131. }
  132. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  133. {
  134. // Calculate points relative to body
  135. mR1 = inRotation1 * mLocalSpacePosition1;
  136. mR2 = inRotation2 * mLocalSpacePosition2;
  137. // Calculate X2 + R2 - X1 - R1
  138. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  139. }
  140. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  141. {
  142. // Calculate world space normals
  143. mN1 = inRotation1 * mLocalSpaceNormal1;
  144. mN2 = inRotation1 * mLocalSpaceNormal2;
  145. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  146. }
  147. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  148. {
  149. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  150. {
  151. // Calculate world space slider axis
  152. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  153. // Calculate slide distance along axis
  154. mD = mU.Dot(mWorldSpaceSliderAxis);
  155. }
  156. }
  157. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  158. {
  159. // Check if distance is within limits
  160. bool below_min = mD <= mLimitsMin;
  161. if (mHasLimits && (below_min || mD >= mLimitsMax))
  162. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mFrequency, mDamping);
  163. else
  164. mPositionLimitsConstraintPart.Deactivate();
  165. }
  166. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  167. {
  168. switch (mMotorState)
  169. {
  170. case EMotorState::Off:
  171. if (mMaxFrictionForce > 0.0f)
  172. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  173. else
  174. mMotorConstraintPart.Deactivate();
  175. break;
  176. case EMotorState::Velocity:
  177. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  178. break;
  179. case EMotorState::Position:
  180. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  181. break;
  182. }
  183. }
  184. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  185. {
  186. // Calculate constraint properties that are constant while bodies don't move
  187. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  188. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  189. CalculateR1R2U(rotation1, rotation2);
  190. CalculatePositionConstraintProperties(rotation1, rotation2);
  191. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  192. CalculateSlidingAxisAndPosition(rotation1);
  193. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  194. CalculateMotorConstraintProperties(inDeltaTime);
  195. }
  196. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  197. {
  198. // Warm starting: Apply previous frame impulse
  199. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  200. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  201. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  202. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  203. }
  204. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  205. {
  206. // Solve motor
  207. bool motor = false;
  208. if (mMotorConstraintPart.IsActive())
  209. {
  210. switch (mMotorState)
  211. {
  212. case EMotorState::Off:
  213. {
  214. float max_lambda = mMaxFrictionForce * inDeltaTime;
  215. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  216. break;
  217. }
  218. case EMotorState::Velocity:
  219. case EMotorState::Position:
  220. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  221. break;
  222. }
  223. }
  224. // Solve position constraint along 2 axis
  225. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  226. // Solve rotation constraint
  227. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  228. // Solve limits along slider axis
  229. bool limit = false;
  230. if (mPositionLimitsConstraintPart.IsActive())
  231. {
  232. if (mD <= mLimitsMin)
  233. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  234. else
  235. {
  236. JPH_ASSERT(mD >= mLimitsMax);
  237. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  238. }
  239. }
  240. return motor || pos || rot || limit;
  241. }
  242. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  243. {
  244. // Motor operates on velocities only, don't call SolvePositionConstraint
  245. // Solve position constraint along 2 axis
  246. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  247. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  248. CalculateR1R2U(rotation1, rotation2);
  249. CalculatePositionConstraintProperties(rotation1, rotation2);
  250. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  251. // Solve rotation constraint
  252. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  253. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  254. // Solve limits along slider axis
  255. bool limit = false;
  256. if (mHasLimits && mFrequency <= 0.0f)
  257. {
  258. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  259. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  260. CalculateR1R2U(rotation1, rotation2);
  261. CalculateSlidingAxisAndPosition(rotation1);
  262. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  263. if (mPositionLimitsConstraintPart.IsActive())
  264. {
  265. if (mD <= mLimitsMin)
  266. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  267. else
  268. {
  269. JPH_ASSERT(mD >= mLimitsMax);
  270. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  271. }
  272. }
  273. }
  274. return pos || rot || limit;
  275. }
  276. #ifdef JPH_DEBUG_RENDERER
  277. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  278. {
  279. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  280. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  281. // Transform the local positions into world space
  282. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  283. Vec3 position1 = transform1 * mLocalSpacePosition1;
  284. Vec3 position2 = transform2 * mLocalSpacePosition2;
  285. // Draw constraint
  286. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  287. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  288. inRenderer->DrawLine(position1, position2, Color::sGreen);
  289. // Draw motor
  290. switch (mMotorState)
  291. {
  292. case EMotorState::Position:
  293. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  294. break;
  295. case EMotorState::Velocity:
  296. {
  297. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  298. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  299. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  300. break;
  301. }
  302. case EMotorState::Off:
  303. break;
  304. }
  305. }
  306. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  307. {
  308. if (mHasLimits)
  309. {
  310. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  311. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  312. // Transform the local positions into world space
  313. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  314. Vec3 position1 = transform1 * mLocalSpacePosition1;
  315. Vec3 position2 = transform2 * mLocalSpacePosition2;
  316. // Calculate the limits in world space
  317. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  318. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  319. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  320. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  321. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  322. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  323. }
  324. }
  325. #endif // JPH_DEBUG_RENDERER
  326. void SliderConstraint::SaveState(StateRecorder &inStream) const
  327. {
  328. TwoBodyConstraint::SaveState(inStream);
  329. mMotorConstraintPart.SaveState(inStream);
  330. mPositionConstraintPart.SaveState(inStream);
  331. mRotationConstraintPart.SaveState(inStream);
  332. mPositionLimitsConstraintPart.SaveState(inStream);
  333. inStream.Write(mMotorState);
  334. inStream.Write(mTargetVelocity);
  335. inStream.Write(mTargetPosition);
  336. }
  337. void SliderConstraint::RestoreState(StateRecorder &inStream)
  338. {
  339. TwoBodyConstraint::RestoreState(inStream);
  340. mMotorConstraintPart.RestoreState(inStream);
  341. mPositionConstraintPart.RestoreState(inStream);
  342. mRotationConstraintPart.RestoreState(inStream);
  343. mPositionLimitsConstraintPart.RestoreState(inStream);
  344. inStream.Read(mMotorState);
  345. inStream.Read(mTargetVelocity);
  346. inStream.Read(mTargetPosition);
  347. }
  348. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  349. {
  350. SliderConstraintSettings *settings = new SliderConstraintSettings;
  351. ToConstraintSettings(*settings);
  352. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  353. settings->mPoint1 = mLocalSpacePosition1;
  354. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  355. settings->mNormalAxis1 = mLocalSpaceNormal1;
  356. settings->mPoint2 = mLocalSpacePosition2;
  357. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  358. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  359. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  360. settings->mLimitsMin = mLimitsMin;
  361. settings->mLimitsMax = mLimitsMax;
  362. settings->mFrequency = mFrequency;
  363. settings->mDamping = mDamping;
  364. settings->mMaxFrictionForce = mMaxFrictionForce;
  365. settings->mMotorSettings = mMotorSettings;
  366. return settings;
  367. }
  368. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  369. {
  370. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  371. }
  372. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  373. {
  374. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  375. mat.SetTranslation(mLocalSpacePosition2);
  376. return mat;
  377. }
  378. JPH_NAMESPACE_END