HelloWorld.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. // Jolt includes
  4. #include <Jolt.h>
  5. #include <RegisterTypes.h>
  6. #include <Core/TempAllocator.h>
  7. #include <Core/JobSystemThreadPool.h>
  8. #include <Physics/PhysicsSettings.h>
  9. #include <Physics/PhysicsSystem.h>
  10. #include <Physics/Collision/Shape/BoxShape.h>
  11. #include <Physics/Collision/Shape/SphereShape.h>
  12. #include <Physics/Body/BodyCreationSettings.h>
  13. #include <Physics/Body/BodyActivationListener.h>
  14. // STL includes
  15. #include <iostream>
  16. #include <cstdarg>
  17. #include <thread>
  18. // All Jolt symbols are in the JPH namespace
  19. using namespace JPH;
  20. // We're also using STL classes in this example
  21. using namespace std;
  22. // Callback for traces, connect this to your own trace function if you have one
  23. static void TraceImpl(const char *inFMT, ...)
  24. {
  25. // Format the message
  26. va_list list;
  27. va_start(list, inFMT);
  28. char buffer[1024];
  29. vsnprintf(buffer, sizeof(buffer), inFMT, list);
  30. // Print to the TTY
  31. cout << buffer << endl;
  32. }
  33. #ifdef JPH_ENABLE_ASSERTS
  34. // Callback for asserts, connect this to your own assert handler if you have one
  35. static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
  36. {
  37. // Print to the TTY
  38. cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
  39. // Breakpoint
  40. return true;
  41. };
  42. #endif // JPH_ENABLE_ASSERTS
  43. // Layer that objects can be in, determines which other objects it can collide with
  44. // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
  45. // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
  46. // but only if you do collision testing).
  47. namespace Layers
  48. {
  49. static constexpr uint8 NON_MOVING = 0;
  50. static constexpr uint8 MOVING = 1;
  51. static constexpr uint8 NUM_LAYERS = 2;
  52. };
  53. // Function that determines if two object layers can collide
  54. bool MyObjectCanCollide(ObjectLayer inObject1, ObjectLayer inObject2)
  55. {
  56. switch (inObject1)
  57. {
  58. case Layers::NON_MOVING:
  59. return inObject2 == Layers::MOVING; // Non moving only collides with moving
  60. case Layers::MOVING:
  61. return true; // Moving collides with everything
  62. default:
  63. JPH_ASSERT(false);
  64. return false;
  65. }
  66. };
  67. // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
  68. // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
  69. // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
  70. // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
  71. // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
  72. namespace BroadPhaseLayers
  73. {
  74. static constexpr BroadPhaseLayer NON_MOVING(0);
  75. static constexpr BroadPhaseLayer MOVING(1);
  76. };
  77. // Function that determines if two broadphase layers can collide
  78. bool MyBroadPhaseCanCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2)
  79. {
  80. switch (inLayer1)
  81. {
  82. case Layers::NON_MOVING:
  83. return inLayer2 == BroadPhaseLayers::MOVING;
  84. case Layers::MOVING:
  85. return true;
  86. default:
  87. JPH_ASSERT(false);
  88. return false;
  89. }
  90. }
  91. // An example contact listener
  92. class MyContactListener : public ContactListener
  93. {
  94. public:
  95. // See: ContactListener
  96. virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, const CollideShapeResult &inCollisionResult) override
  97. {
  98. cout << "Contact validate callback" << endl;
  99. // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
  100. return ValidateResult::AcceptAllContactsForThisBodyPair;
  101. }
  102. virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  103. {
  104. cout << "A contact was added" << endl;
  105. }
  106. virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  107. {
  108. cout << "A contact was persisted" << endl;
  109. }
  110. virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
  111. {
  112. cout << "A contact was removed" << endl;
  113. }
  114. };
  115. // An example activation listener
  116. class MyBodyActivationListener : public BodyActivationListener
  117. {
  118. public:
  119. virtual void OnBodyActivated(const BodyID &inBodyID, void *inBodyUserData) override
  120. {
  121. cout << "A body got activated" << endl;
  122. }
  123. virtual void OnBodyDeactivated(const BodyID &inBodyID, void *inBodyUserData) override
  124. {
  125. cout << "A body went to sleep" << endl;
  126. }
  127. };
  128. // Program entry point
  129. int main(int argc, char** argv)
  130. {
  131. // Install callbacks
  132. Trace = TraceImpl;
  133. JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
  134. // Register all Jolt physics types
  135. RegisterTypes();
  136. // We need a temp allocator for temporary allocations during the physics update. We're
  137. // pre-allocating 10 MB to avoid having to do allocations during the physics update.
  138. // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
  139. // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
  140. // malloc / free.
  141. TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
  142. // We need a job system that will execute physics jobs on multiple threads. Typically
  143. // you would implement the JobSystem interface yourself and let Jolt Physics run on top
  144. // of your own job scheduler. JobSystemThreadPool is an example implementation.
  145. JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
  146. // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
  147. const uint cMaxBodies = 1024;
  148. // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
  149. const uint cNumBodyMutexes = 0;
  150. // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
  151. // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
  152. // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
  153. const uint cMaxBodyPairs = 1024;
  154. // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
  155. // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
  156. const uint cMaxContactConstraints = 1024;
  157. // Create mapping table from object layer to broadphase layer
  158. ObjectToBroadPhaseLayer object_to_broadphase;
  159. object_to_broadphase.resize(Layers::NUM_LAYERS);
  160. object_to_broadphase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
  161. object_to_broadphase[Layers::MOVING] = BroadPhaseLayers::MOVING;
  162. // Now we can create the actual physics system.
  163. PhysicsSystem physics_system;
  164. physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, object_to_broadphase, MyBroadPhaseCanCollide, MyObjectCanCollide);
  165. // A body activation listener gets notified when bodies activate and go to sleep
  166. // Note that this is called from a job so whatever you do here needs to be thread safe.
  167. // Registering one is entirely optional.
  168. MyBodyActivationListener body_activation_listener;
  169. physics_system.SetBodyActivationListener(&body_activation_listener);
  170. // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
  171. // Note that this is called from a job so whatever you do here needs to be thread safe.
  172. // Registering one is entirely optional.
  173. MyContactListener contact_listener;
  174. physics_system.SetContactListener(&contact_listener);
  175. // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
  176. // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
  177. BodyInterface &body_interface = physics_system.GetBodyInterface();
  178. // Next we can create a rigid body to serve as the floor, we make a large box
  179. // Create the settings for the collision volume (the shape).
  180. // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
  181. BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
  182. // Create the shape
  183. ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
  184. ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
  185. // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
  186. BodyCreationSettings floor_settings(floor_shape, Vec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
  187. // Create the actual rigid body
  188. Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
  189. // Add it to the world
  190. body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
  191. // Now create a dynamic body to bounce on the floor
  192. // Note that this uses the shorthand version of creating and adding a body to the world
  193. BodyCreationSettings sphere_settings(new SphereShape(0.5f), Vec3(0.0f, 2.0f, 0.0f), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
  194. BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
  195. // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
  196. // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
  197. body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
  198. // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
  199. const float cDeltaTime = 1.0f / 60.0f;
  200. // Now we're ready to simulate the body, keep simulating until it goes to sleep
  201. uint step = 0;
  202. while (body_interface.IsActive(sphere_id))
  203. {
  204. // Next step
  205. ++step;
  206. // Output current position and velocity of the sphere
  207. Vec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
  208. Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
  209. cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
  210. // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
  211. const int cCollisionSteps = 1;
  212. // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
  213. const int cIntegrationSubSteps = 1;
  214. // Step the world
  215. physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
  216. }
  217. // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
  218. body_interface.RemoveBody(sphere_id);
  219. // Destroy the sphere. After this the sphere ID is no longer valid.
  220. body_interface.DestroyBody(sphere_id);
  221. // Remove and destroy the floor
  222. body_interface.RemoveBody(floor->GetID());
  223. body_interface.DestroyBody(floor->GetID());
  224. return 0;
  225. }