ContactConstraintManager.cpp 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/ContactConstraintManager.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/Physics/PhysicsUpdateContext.h>
  8. #include <Jolt/Physics/PhysicsSettings.h>
  9. #include <Jolt/Physics/IslandBuilder.h>
  10. #include <Jolt/Physics/DeterminismLog.h>
  11. #include <Jolt/Core/TempAllocator.h>
  12. #include <Jolt/Core/QuickSort.h>
  13. #ifdef JPH_DEBUG_RENDERER
  14. #include <Jolt/Renderer/DebugRenderer.h>
  15. #endif // JPH_DEBUG_RENDERER
  16. JPH_NAMESPACE_BEGIN
  17. using namespace literals;
  18. #ifdef JPH_DEBUG_RENDERER
  19. bool ContactConstraintManager::sDrawContactPoint = false;
  20. bool ContactConstraintManager::sDrawSupportingFaces = false;
  21. bool ContactConstraintManager::sDrawContactPointReduction = false;
  22. bool ContactConstraintManager::sDrawContactManifolds = false;
  23. #endif // JPH_DEBUG_RENDERER
  24. //#define JPH_MANIFOLD_CACHE_DEBUG
  25. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  26. // ContactConstraintManager::WorldContactPoint
  27. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  28. void ContactConstraintManager::WorldContactPoint::CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMassScale1, float inInvInertiaScale1, const Body &inBody2, float inInvMassScale2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal)
  29. {
  30. // Calculate collision points relative to body
  31. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  32. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  33. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  34. mNonPenetrationConstraint.CalculateConstraintPropertiesWithMassScale(inBody1, inInvMassScale1, inInvInertiaScale1, r1, inBody2, inInvMassScale2, inInvInertiaScale2, r2, inWorldSpaceNormal);
  35. }
  36. template <EMotionType Type1, EMotionType Type2>
  37. JPH_INLINE void ContactConstraintManager::WorldContactPoint::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution)
  38. {
  39. JPH_DET_LOG("TemplatedCalculateFrictionAndNonPenetrationConstraintProperties: p1: " << inWorldSpacePosition1 << " p2: " << inWorldSpacePosition2
  40. << " normal: " << inWorldSpaceNormal << " tangent1: " << inWorldSpaceTangent1 << " tangent2: " << inWorldSpaceTangent2
  41. << " restitution: " << inSettings.mCombinedRestitution << " friction: " << inSettings.mCombinedFriction << " minv: " << inMinVelocityForRestitution
  42. << " surface_vel: " << inSettings.mRelativeLinearSurfaceVelocity << " surface_ang: " << inSettings.mRelativeAngularSurfaceVelocity);
  43. // Calculate collision points relative to body
  44. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  45. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  46. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  47. // Calculate velocity of collision points
  48. Vec3 relative_velocity;
  49. if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
  50. relative_velocity = inBody2.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r2) - inBody1.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r1);
  51. else if constexpr (Type1 != EMotionType::Static)
  52. relative_velocity = -inBody1.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r1);
  53. else if constexpr (Type2 != EMotionType::Static)
  54. relative_velocity = inBody2.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r2);
  55. else
  56. {
  57. JPH_ASSERT(false); // Static vs static makes no sense
  58. relative_velocity = Vec3::sZero();
  59. }
  60. float normal_velocity = relative_velocity.Dot(inWorldSpaceNormal);
  61. // How much the shapes are penetrating (> 0 if penetrating, < 0 if separated)
  62. float penetration = Vec3(inWorldSpacePosition1 - inWorldSpacePosition2).Dot(inWorldSpaceNormal);
  63. // If there is no penetration, this is a speculative contact and we will apply a bias to the contact constraint
  64. // so that the constraint becomes relative_velocity . contact normal > -penetration / delta_time
  65. // instead of relative_velocity . contact normal > 0
  66. // See: GDC 2013: "Physics for Game Programmers; Continuous Collision" - Erin Catto
  67. float speculative_contact_velocity_bias = max(0.0f, -penetration / inDeltaTime);
  68. // Determine if the velocity is big enough for restitution
  69. float normal_velocity_bias;
  70. if (inSettings.mCombinedRestitution > 0.0f && normal_velocity < -inMinVelocityForRestitution)
  71. {
  72. // We have a velocity that is big enough for restitution. This is where speculative contacts don't work
  73. // great as we have to decide now if we're going to apply the restitution or not. If the relative
  74. // velocity is big enough for a hit, we apply the restitution (in the end, due to other constraints,
  75. // the objects may actually not collide and we will have applied restitution incorrectly). Another
  76. // artifact that occurs because of this approximation is that the object will bounce from its current
  77. // position rather than from a position where it is touching the other object. This causes the object
  78. // to appear to move faster for 1 frame (the opposite of time stealing).
  79. if (normal_velocity < -speculative_contact_velocity_bias)
  80. normal_velocity_bias = inSettings.mCombinedRestitution * normal_velocity;
  81. else
  82. // In this case we have predicted that we don't hit the other object, but if we do (due to other constraints changing velocities)
  83. // the speculative contact will prevent penetration but will not apply restitution leading to another artifact.
  84. normal_velocity_bias = speculative_contact_velocity_bias;
  85. }
  86. else
  87. {
  88. // No restitution. We can safely apply our contact velocity bias.
  89. normal_velocity_bias = speculative_contact_velocity_bias;
  90. }
  91. mNonPenetrationConstraint.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceNormal, normal_velocity_bias);
  92. // Calculate friction part
  93. if (inSettings.mCombinedFriction > 0.0f)
  94. {
  95. // Get surface velocity relative to tangents
  96. Vec3 ws_surface_velocity = inSettings.mRelativeLinearSurfaceVelocity + inSettings.mRelativeAngularSurfaceVelocity.Cross(r1);
  97. float surface_velocity1 = inWorldSpaceTangent1.Dot(ws_surface_velocity);
  98. float surface_velocity2 = inWorldSpaceTangent2.Dot(ws_surface_velocity);
  99. // Implement friction as 2 AxisContraintParts
  100. mFrictionConstraint1.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent1, surface_velocity1);
  101. mFrictionConstraint2.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent2, surface_velocity2);
  102. }
  103. else
  104. {
  105. // Turn off friction constraint
  106. mFrictionConstraint1.Deactivate();
  107. mFrictionConstraint2.Deactivate();
  108. }
  109. }
  110. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  111. // ContactConstraintManager::ContactConstraint
  112. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  113. #ifdef JPH_DEBUG_RENDERER
  114. void ContactConstraintManager::ContactConstraint::Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const
  115. {
  116. if (mContactPoints.empty())
  117. return;
  118. // Get body transforms
  119. RMat44 transform_body1 = mBody1->GetCenterOfMassTransform();
  120. RMat44 transform_body2 = mBody2->GetCenterOfMassTransform();
  121. RVec3 prev_point = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints.back().mContactPoint->mPosition1);
  122. for (const WorldContactPoint &wcp : mContactPoints)
  123. {
  124. // Test if any lambda from the previous frame was transferred
  125. float radius = wcp.mNonPenetrationConstraint.GetTotalLambda() == 0.0f
  126. && wcp.mFrictionConstraint1.GetTotalLambda() == 0.0f
  127. && wcp.mFrictionConstraint2.GetTotalLambda() == 0.0f? 0.1f : 0.2f;
  128. RVec3 next_point = transform_body1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  129. inRenderer->DrawMarker(next_point, Color::sCyan, radius);
  130. inRenderer->DrawMarker(transform_body2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2), Color::sPurple, radius);
  131. // Draw edge
  132. inRenderer->DrawArrow(prev_point, next_point, inManifoldColor, 0.05f);
  133. prev_point = next_point;
  134. }
  135. // Draw normal
  136. RVec3 wp = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints[0].mContactPoint->mPosition1);
  137. inRenderer->DrawArrow(wp, wp + GetWorldSpaceNormal(), Color::sRed, 0.05f);
  138. // Get tangents
  139. Vec3 t1, t2;
  140. GetTangents(t1, t2);
  141. // Draw tangents
  142. inRenderer->DrawLine(wp, wp + t1, Color::sGreen);
  143. inRenderer->DrawLine(wp, wp + t2, Color::sBlue);
  144. }
  145. #endif // JPH_DEBUG_RENDERER
  146. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  147. // ContactConstraintManager::CachedContactPoint
  148. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  149. void ContactConstraintManager::CachedContactPoint::SaveState(StateRecorder &inStream) const
  150. {
  151. inStream.Write(mPosition1);
  152. inStream.Write(mPosition2);
  153. inStream.Write(mNonPenetrationLambda);
  154. inStream.Write(mFrictionLambda);
  155. }
  156. void ContactConstraintManager::CachedContactPoint::RestoreState(StateRecorder &inStream)
  157. {
  158. inStream.Read(mPosition1);
  159. inStream.Read(mPosition2);
  160. inStream.Read(mNonPenetrationLambda);
  161. inStream.Read(mFrictionLambda);
  162. }
  163. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  164. // ContactConstraintManager::CachedManifold
  165. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  166. void ContactConstraintManager::CachedManifold::SaveState(StateRecorder &inStream) const
  167. {
  168. inStream.Write(mContactNormal);
  169. }
  170. void ContactConstraintManager::CachedManifold::RestoreState(StateRecorder &inStream)
  171. {
  172. inStream.Read(mContactNormal);
  173. }
  174. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  175. // ContactConstraintManager::CachedBodyPair
  176. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  177. void ContactConstraintManager::CachedBodyPair::SaveState(StateRecorder &inStream) const
  178. {
  179. inStream.Write(mDeltaPosition);
  180. inStream.Write(mDeltaRotation);
  181. }
  182. void ContactConstraintManager::CachedBodyPair::RestoreState(StateRecorder &inStream)
  183. {
  184. inStream.Read(mDeltaPosition);
  185. inStream.Read(mDeltaRotation);
  186. }
  187. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  188. // ContactConstraintManager::ManifoldCache
  189. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  190. void ContactConstraintManager::ManifoldCache::Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize)
  191. {
  192. mAllocator.Init(inMaxBodyPairs * sizeof(BodyPairMap::KeyValue) + inCachedManifoldsSize);
  193. mCachedManifolds.Init(GetNextPowerOf2(inMaxContactConstraints));
  194. mCachedBodyPairs.Init(GetNextPowerOf2(inMaxBodyPairs));
  195. }
  196. void ContactConstraintManager::ManifoldCache::Clear()
  197. {
  198. JPH_PROFILE_FUNCTION();
  199. mCachedManifolds.Clear();
  200. mCachedBodyPairs.Clear();
  201. mAllocator.Clear();
  202. #ifdef JPH_ENABLE_ASSERTS
  203. // Mark as incomplete
  204. mIsFinalized = false;
  205. #endif
  206. }
  207. void ContactConstraintManager::ManifoldCache::Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  208. {
  209. // Minimum amount of buckets to use in the hash map
  210. constexpr uint32 cMinBuckets = 1024;
  211. // Use the next higher power of 2 of amount of objects in the cache from last frame to determine the amount of buckets in this frame
  212. mCachedManifolds.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumManifolds)), mCachedManifolds.GetMaxBuckets()));
  213. mCachedBodyPairs.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumBodyPairs)), mCachedBodyPairs.GetMaxBuckets()));
  214. }
  215. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const
  216. {
  217. JPH_ASSERT(mIsFinalized);
  218. return mCachedManifolds.Find(inKey, inKeyHash);
  219. }
  220. ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  221. {
  222. JPH_ASSERT(!mIsFinalized);
  223. MKeyValue *kv = mCachedManifolds.Create(ioContactAllocator, inKey, inKeyHash, CachedManifold::sGetRequiredExtraSize(inNumContactPoints));
  224. if (kv == nullptr)
  225. {
  226. ioContactAllocator.mErrors |= EPhysicsUpdateError::ManifoldCacheFull;
  227. return nullptr;
  228. }
  229. kv->GetValue().mNumContactPoints = uint16(inNumContactPoints);
  230. ++ioContactAllocator.mNumManifolds;
  231. return kv;
  232. }
  233. ContactConstraintManager::MKVAndCreated ContactConstraintManager::ManifoldCache::FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  234. {
  235. MKeyValue *kv = const_cast<MKeyValue *>(mCachedManifolds.Find(inKey, inKeyHash));
  236. if (kv != nullptr)
  237. return { kv, false };
  238. return { Create(ioContactAllocator, inKey, inKeyHash, inNumContactPoints), true };
  239. }
  240. uint32 ContactConstraintManager::ManifoldCache::ToHandle(const MKeyValue *inKeyValue) const
  241. {
  242. JPH_ASSERT(!mIsFinalized);
  243. return mCachedManifolds.ToHandle(inKeyValue);
  244. }
  245. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::FromHandle(uint32 inHandle) const
  246. {
  247. JPH_ASSERT(mIsFinalized);
  248. return mCachedManifolds.FromHandle(inHandle);
  249. }
  250. const ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Find(const BodyPair &inKey, uint64 inKeyHash) const
  251. {
  252. JPH_ASSERT(mIsFinalized);
  253. return mCachedBodyPairs.Find(inKey, inKeyHash);
  254. }
  255. ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash)
  256. {
  257. JPH_ASSERT(!mIsFinalized);
  258. BPKeyValue *kv = mCachedBodyPairs.Create(ioContactAllocator, inKey, inKeyHash, 0);
  259. if (kv == nullptr)
  260. {
  261. ioContactAllocator.mErrors |= EPhysicsUpdateError::BodyPairCacheFull;
  262. return nullptr;
  263. }
  264. ++ioContactAllocator.mNumBodyPairs;
  265. return kv;
  266. }
  267. void ContactConstraintManager::ManifoldCache::GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const
  268. {
  269. JPH_ASSERT(mIsFinalized);
  270. mCachedBodyPairs.GetAllKeyValues(outAll);
  271. // Sort by key
  272. QuickSort(outAll.begin(), outAll.end(), [](const BPKeyValue *inLHS, const BPKeyValue *inRHS) {
  273. return inLHS->GetKey() < inRHS->GetKey();
  274. });
  275. }
  276. void ContactConstraintManager::ManifoldCache::GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const
  277. {
  278. JPH_ASSERT(mIsFinalized);
  279. // Iterate through the attached manifolds
  280. for (uint32 handle = inBodyPair.mFirstCachedManifold; handle != ManifoldMap::cInvalidHandle; handle = FromHandle(handle)->GetValue().mNextWithSameBodyPair)
  281. {
  282. const MKeyValue *kv = mCachedManifolds.FromHandle(handle);
  283. outAll.push_back(kv);
  284. }
  285. // Sort by key
  286. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  287. return inLHS->GetKey() < inRHS->GetKey();
  288. });
  289. }
  290. void ContactConstraintManager::ManifoldCache::GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const
  291. {
  292. mCachedManifolds.GetAllKeyValues(outAll);
  293. for (int i = (int)outAll.size() - 1; i >= 0; --i)
  294. if ((outAll[i]->GetValue().mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0)
  295. {
  296. outAll[i] = outAll.back();
  297. outAll.pop_back();
  298. }
  299. // Sort by key
  300. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  301. return inLHS->GetKey() < inRHS->GetKey();
  302. });
  303. }
  304. void ContactConstraintManager::ManifoldCache::ContactPointRemovedCallbacks(ContactListener *inListener)
  305. {
  306. JPH_PROFILE_FUNCTION();
  307. for (MKeyValue &kv : mCachedManifolds)
  308. if ((kv.GetValue().mFlags & uint16(CachedManifold::EFlags::ContactPersisted)) == 0)
  309. inListener->OnContactRemoved(kv.GetKey());
  310. }
  311. #ifdef JPH_ENABLE_ASSERTS
  312. void ContactConstraintManager::ManifoldCache::Finalize()
  313. {
  314. mIsFinalized = true;
  315. #ifdef JPH_MANIFOLD_CACHE_DEBUG
  316. Trace("ManifoldMap:");
  317. mCachedManifolds.TraceStats();
  318. Trace("BodyPairMap:");
  319. mCachedBodyPairs.TraceStats();
  320. #endif // JPH_MANIFOLD_CACHE_DEBUG
  321. }
  322. #endif
  323. void ContactConstraintManager::ManifoldCache::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  324. {
  325. JPH_ASSERT(mIsFinalized);
  326. // Get contents of cache
  327. Array<const BPKeyValue *> all_bp;
  328. GetAllBodyPairsSorted(all_bp);
  329. // Determine which ones to save
  330. Array<const BPKeyValue *> selected_bp;
  331. if (inFilter == nullptr)
  332. selected_bp = std::move(all_bp);
  333. else
  334. {
  335. selected_bp.reserve(all_bp.size());
  336. for (const BPKeyValue *bp_kv : all_bp)
  337. if (inFilter->ShouldSaveContact(bp_kv->GetKey().mBodyA, bp_kv->GetKey().mBodyB))
  338. selected_bp.push_back(bp_kv);
  339. }
  340. // Write body pairs
  341. size_t num_body_pairs = selected_bp.size();
  342. inStream.Write(num_body_pairs);
  343. for (const BPKeyValue *bp_kv : selected_bp)
  344. {
  345. // Write body pair key
  346. inStream.Write(bp_kv->GetKey());
  347. // Write body pair
  348. const CachedBodyPair &bp = bp_kv->GetValue();
  349. bp.SaveState(inStream);
  350. // Get attached manifolds
  351. Array<const MKeyValue *> all_m;
  352. GetAllManifoldsSorted(bp, all_m);
  353. // Write num manifolds
  354. size_t num_manifolds = all_m.size();
  355. inStream.Write(num_manifolds);
  356. // Write all manifolds
  357. for (const MKeyValue *m_kv : all_m)
  358. {
  359. // Write key
  360. inStream.Write(m_kv->GetKey());
  361. const CachedManifold &cm = m_kv->GetValue();
  362. JPH_ASSERT((cm.mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0);
  363. // Write amount of contacts
  364. inStream.Write(cm.mNumContactPoints);
  365. // Write manifold
  366. cm.SaveState(inStream);
  367. // Write contact points
  368. for (uint32 i = 0; i < cm.mNumContactPoints; ++i)
  369. cm.mContactPoints[i].SaveState(inStream);
  370. }
  371. }
  372. // Get CCD manifolds
  373. Array<const MKeyValue *> all_m;
  374. GetAllCCDManifoldsSorted(all_m);
  375. // Determine which ones to save
  376. Array<const MKeyValue *> selected_m;
  377. if (inFilter == nullptr)
  378. selected_m = std::move(all_m);
  379. else
  380. {
  381. selected_m.reserve(all_m.size());
  382. for (const MKeyValue *m_kv : all_m)
  383. if (inFilter->ShouldSaveContact(m_kv->GetKey().GetBody1ID(), m_kv->GetKey().GetBody2ID()))
  384. selected_m.push_back(m_kv);
  385. }
  386. // Write all CCD manifold keys
  387. size_t num_manifolds = selected_m.size();
  388. inStream.Write(num_manifolds);
  389. for (const MKeyValue *m_kv : selected_m)
  390. inStream.Write(m_kv->GetKey());
  391. }
  392. bool ContactConstraintManager::ManifoldCache::RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream)
  393. {
  394. JPH_ASSERT(!mIsFinalized);
  395. bool success = true;
  396. // Create a contact allocator for restoring the contact cache
  397. ContactAllocator contact_allocator(GetContactAllocator());
  398. // When validating, get all existing body pairs
  399. Array<const BPKeyValue *> all_bp;
  400. if (inStream.IsValidating())
  401. inReadCache.GetAllBodyPairsSorted(all_bp);
  402. // Read amount of body pairs
  403. size_t num_body_pairs;
  404. if (inStream.IsValidating())
  405. num_body_pairs = all_bp.size();
  406. inStream.Read(num_body_pairs);
  407. // Read entire cache
  408. for (size_t i = 0; i < num_body_pairs; ++i)
  409. {
  410. // Read key
  411. BodyPair body_pair_key;
  412. if (inStream.IsValidating() && i < all_bp.size())
  413. body_pair_key = all_bp[i]->GetKey();
  414. inStream.Read(body_pair_key);
  415. // Create new entry for this body pair
  416. uint64 body_pair_hash = body_pair_key.GetHash();
  417. BPKeyValue *bp_kv = Create(contact_allocator, body_pair_key, body_pair_hash);
  418. if (bp_kv == nullptr)
  419. {
  420. // Out of cache space
  421. success = false;
  422. break;
  423. }
  424. CachedBodyPair &bp = bp_kv->GetValue();
  425. // Read body pair
  426. if (inStream.IsValidating() && i < all_bp.size())
  427. memcpy(&bp, &all_bp[i]->GetValue(), sizeof(CachedBodyPair));
  428. bp.RestoreState(inStream);
  429. // When validating, get all existing manifolds
  430. Array<const MKeyValue *> all_m;
  431. if (inStream.IsValidating())
  432. inReadCache.GetAllManifoldsSorted(all_bp[i]->GetValue(), all_m);
  433. // Read amount of manifolds
  434. size_t num_manifolds;
  435. if (inStream.IsValidating())
  436. num_manifolds = all_m.size();
  437. inStream.Read(num_manifolds);
  438. uint32 handle = ManifoldMap::cInvalidHandle;
  439. for (size_t j = 0; j < num_manifolds; ++j)
  440. {
  441. // Read key
  442. SubShapeIDPair sub_shape_key;
  443. if (inStream.IsValidating() && j < all_m.size())
  444. sub_shape_key = all_m[j]->GetKey();
  445. inStream.Read(sub_shape_key);
  446. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  447. // Read amount of contact points
  448. uint16 num_contact_points;
  449. if (inStream.IsValidating() && j < all_m.size())
  450. num_contact_points = all_m[j]->GetValue().mNumContactPoints;
  451. inStream.Read(num_contact_points);
  452. // Read manifold
  453. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, num_contact_points);
  454. if (m_kv == nullptr)
  455. {
  456. // Out of cache space
  457. success = false;
  458. break;
  459. }
  460. CachedManifold &cm = m_kv->GetValue();
  461. if (inStream.IsValidating() && j < all_m.size())
  462. {
  463. memcpy(&cm, &all_m[j]->GetValue(), CachedManifold::sGetRequiredTotalSize(num_contact_points));
  464. cm.mNumContactPoints = uint16(num_contact_points); // Restore num contact points
  465. }
  466. cm.RestoreState(inStream);
  467. cm.mNextWithSameBodyPair = handle;
  468. handle = ToHandle(m_kv);
  469. // Read contact points
  470. for (uint32 k = 0; k < num_contact_points; ++k)
  471. cm.mContactPoints[k].RestoreState(inStream);
  472. }
  473. bp.mFirstCachedManifold = handle;
  474. }
  475. // When validating, get all existing CCD manifolds
  476. Array<const MKeyValue *> all_m;
  477. if (inStream.IsValidating())
  478. inReadCache.GetAllCCDManifoldsSorted(all_m);
  479. // Read amount of CCD manifolds
  480. size_t num_manifolds;
  481. if (inStream.IsValidating())
  482. num_manifolds = all_m.size();
  483. inStream.Read(num_manifolds);
  484. for (size_t j = 0; j < num_manifolds; ++j)
  485. {
  486. // Read key
  487. SubShapeIDPair sub_shape_key;
  488. if (inStream.IsValidating() && j < all_m.size())
  489. sub_shape_key = all_m[j]->GetKey();
  490. inStream.Read(sub_shape_key);
  491. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  492. // Create CCD manifold
  493. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, 0);
  494. if (m_kv == nullptr)
  495. {
  496. // Out of cache space
  497. success = false;
  498. break;
  499. }
  500. CachedManifold &cm = m_kv->GetValue();
  501. cm.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  502. }
  503. #ifdef JPH_ENABLE_ASSERTS
  504. mIsFinalized = true;
  505. #endif
  506. return success;
  507. }
  508. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  509. // ContactConstraintManager
  510. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  511. ContactConstraintManager::ContactConstraintManager(const PhysicsSettings &inPhysicsSettings) :
  512. mPhysicsSettings(inPhysicsSettings)
  513. {
  514. #ifdef JPH_ENABLE_ASSERTS
  515. // For the first frame mark this empty buffer as finalized
  516. mCache[mCacheWriteIdx ^ 1].Finalize();
  517. #endif
  518. }
  519. ContactConstraintManager::~ContactConstraintManager()
  520. {
  521. JPH_ASSERT(mConstraints == nullptr);
  522. }
  523. void ContactConstraintManager::Init(uint inMaxBodyPairs, uint inMaxContactConstraints)
  524. {
  525. mMaxConstraints = inMaxContactConstraints;
  526. // Calculate worst case cache usage
  527. uint cached_manifolds_size = inMaxContactConstraints * (sizeof(CachedManifold) + (MaxContactPoints - 1) * sizeof(CachedContactPoint));
  528. // Init the caches
  529. mCache[0].Init(inMaxBodyPairs, inMaxContactConstraints, cached_manifolds_size);
  530. mCache[1].Init(inMaxBodyPairs, inMaxContactConstraints, cached_manifolds_size);
  531. }
  532. void ContactConstraintManager::PrepareConstraintBuffer(PhysicsUpdateContext *inContext)
  533. {
  534. // Store context
  535. mUpdateContext = inContext;
  536. // Allocate temporary constraint buffer
  537. JPH_ASSERT(mConstraints == nullptr);
  538. mConstraints = (ContactConstraint *)inContext->mTempAllocator->Allocate(mMaxConstraints * sizeof(ContactConstraint));
  539. }
  540. template <EMotionType Type1, EMotionType Type2>
  541. JPH_INLINE void ContactConstraintManager::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  542. {
  543. // Calculate scaled mass and inertia
  544. float inv_m1;
  545. Mat44 inv_i1;
  546. if constexpr (Type1 == EMotionType::Dynamic)
  547. {
  548. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  549. inv_m1 = inSettings.mInvMassScale1 * mp1->GetInverseMass();
  550. inv_i1 = inSettings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inTransformBody1.GetRotation());
  551. }
  552. else
  553. {
  554. inv_m1 = 0.0f;
  555. inv_i1 = Mat44::sZero();
  556. }
  557. float inv_m2;
  558. Mat44 inv_i2;
  559. if constexpr (Type2 == EMotionType::Dynamic)
  560. {
  561. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  562. inv_m2 = inSettings.mInvMassScale2 * mp2->GetInverseMass();
  563. inv_i2 = inSettings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inTransformBody2.GetRotation());
  564. }
  565. else
  566. {
  567. inv_m2 = 0.0f;
  568. inv_i2 = Mat44::sZero();
  569. }
  570. // Calculate tangents
  571. Vec3 t1, t2;
  572. ioConstraint.GetTangents(t1, t2);
  573. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  574. // Setup velocity constraint properties
  575. float min_velocity_for_restitution = mPhysicsSettings.mMinVelocityForRestitution;
  576. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  577. {
  578. RVec3 p1 = inTransformBody1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  579. RVec3 p2 = inTransformBody2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  580. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(inDeltaTime, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1, p2, ws_normal, t1, t2, inSettings, min_velocity_for_restitution);
  581. }
  582. }
  583. inline void ContactConstraintManager::CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  584. {
  585. // Dispatch to the correct templated form
  586. switch (inBody1.GetMotionType())
  587. {
  588. case EMotionType::Dynamic:
  589. switch (inBody2.GetMotionType())
  590. {
  591. case EMotionType::Dynamic:
  592. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  593. break;
  594. case EMotionType::Kinematic:
  595. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Kinematic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  596. break;
  597. case EMotionType::Static:
  598. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Static>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  599. break;
  600. default:
  601. JPH_ASSERT(false);
  602. break;
  603. }
  604. break;
  605. case EMotionType::Kinematic:
  606. JPH_ASSERT(inBody2.IsDynamic());
  607. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Kinematic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  608. break;
  609. case EMotionType::Static:
  610. JPH_ASSERT(inBody2.IsDynamic());
  611. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Static, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  612. break;
  613. default:
  614. JPH_ASSERT(false);
  615. break;
  616. }
  617. }
  618. void ContactConstraintManager::GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated)
  619. {
  620. JPH_PROFILE_FUNCTION();
  621. // Start with nothing found and not handled
  622. outConstraintCreated = false;
  623. outPairHandled = false;
  624. // Swap bodies so that body 1 id < body 2 id
  625. Body *body1, *body2;
  626. if (inBody1.GetID() < inBody2.GetID())
  627. {
  628. body1 = &inBody1;
  629. body2 = &inBody2;
  630. }
  631. else
  632. {
  633. body1 = &inBody2;
  634. body2 = &inBody1;
  635. }
  636. // Find the cached body pair
  637. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  638. uint64 body_pair_hash = body_pair_key.GetHash();
  639. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  640. const BPKeyValue *kv = read_cache.Find(body_pair_key, body_pair_hash);
  641. if (kv == nullptr)
  642. return;
  643. const CachedBodyPair &input_cbp = kv->GetValue();
  644. // Get relative translation
  645. Quat inv_r1 = body1->GetRotation().Conjugated();
  646. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  647. // Get old position delta
  648. Vec3 old_delta_position = Vec3::sLoadFloat3Unsafe(input_cbp.mDeltaPosition);
  649. // Check if bodies are still roughly in the same relative position
  650. if ((delta_position - old_delta_position).LengthSq() > mPhysicsSettings.mBodyPairCacheMaxDeltaPositionSq)
  651. return;
  652. // Determine relative orientation
  653. Quat delta_rotation = inv_r1 * body2->GetRotation();
  654. // Reconstruct old quaternion delta
  655. Quat old_delta_rotation = Quat::sLoadFloat3Unsafe(input_cbp.mDeltaRotation);
  656. // Check if bodies are still roughly in the same relative orientation
  657. // The delta between 2 quaternions p and q is: p q^* = [rotation_axis * sin(angle / 2), cos(angle / 2)]
  658. // From the W component we can extract the angle: cos(angle / 2) = px * qx + py * qy + pz * qz + pw * qw = p . q
  659. // Since we want to abort if the rotation is smaller than -angle or bigger than angle, we can write the comparison as |p . q| < cos(angle / 2)
  660. if (abs(delta_rotation.Dot(old_delta_rotation)) < mPhysicsSettings.mBodyPairCacheCosMaxDeltaRotationDiv2)
  661. return;
  662. // The cache is valid, return that we've handled this body pair
  663. outPairHandled = true;
  664. // Copy the cached body pair to this frame
  665. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  666. BPKeyValue *output_bp_kv = write_cache.Create(ioContactAllocator, body_pair_key, body_pair_hash);
  667. if (output_bp_kv == nullptr)
  668. return; // Out of cache space
  669. CachedBodyPair *output_cbp = &output_bp_kv->GetValue();
  670. memcpy(output_cbp, &input_cbp, sizeof(CachedBodyPair));
  671. // If there were no contacts, we have handled the contact
  672. if (input_cbp.mFirstCachedManifold == ManifoldMap::cInvalidHandle)
  673. return;
  674. // Get body transforms
  675. RMat44 transform_body1 = body1->GetCenterOfMassTransform();
  676. RMat44 transform_body2 = body2->GetCenterOfMassTransform();
  677. // Get time step
  678. float delta_time = mUpdateContext->mStepDeltaTime;
  679. // Copy manifolds
  680. uint32 output_handle = ManifoldMap::cInvalidHandle;
  681. uint32 input_handle = input_cbp.mFirstCachedManifold;
  682. do
  683. {
  684. JPH_PROFILE("Add Constraint From Cached Manifold");
  685. // Find the existing manifold
  686. const MKeyValue *input_kv = read_cache.FromHandle(input_handle);
  687. const SubShapeIDPair &input_key = input_kv->GetKey();
  688. const CachedManifold &input_cm = input_kv->GetValue();
  689. JPH_ASSERT(input_cm.mNumContactPoints > 0); // There should be contact points in this manifold!
  690. // Create room for manifold in write buffer and copy data
  691. uint64 input_hash = input_key.GetHash();
  692. MKeyValue *output_kv = write_cache.Create(ioContactAllocator, input_key, input_hash, input_cm.mNumContactPoints);
  693. if (output_kv == nullptr)
  694. break; // Out of cache space
  695. CachedManifold *output_cm = &output_kv->GetValue();
  696. memcpy(output_cm, &input_cm, CachedManifold::sGetRequiredTotalSize(input_cm.mNumContactPoints));
  697. // Link the object under the body pairs
  698. output_cm->mNextWithSameBodyPair = output_handle;
  699. output_handle = write_cache.ToHandle(output_kv);
  700. // Calculate default contact settings
  701. ContactSettings settings;
  702. settings.mCombinedFriction = mCombineFriction(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  703. settings.mCombinedRestitution = mCombineRestitution(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  704. settings.mIsSensor = body1->IsSensor() || body2->IsSensor();
  705. // Calculate world space contact normal
  706. Vec3 world_space_normal = transform_body2.Multiply3x3(Vec3::sLoadFloat3Unsafe(output_cm->mContactNormal)).Normalized();
  707. // Call contact listener to update settings
  708. if (mContactListener != nullptr)
  709. {
  710. // Convert constraint to manifold structure for callback
  711. ContactManifold manifold;
  712. manifold.mWorldSpaceNormal = world_space_normal;
  713. manifold.mSubShapeID1 = input_key.GetSubShapeID1();
  714. manifold.mSubShapeID2 = input_key.GetSubShapeID2();
  715. manifold.mBaseOffset = transform_body1.GetTranslation();
  716. manifold.mRelativeContactPointsOn1.resize(output_cm->mNumContactPoints);
  717. manifold.mRelativeContactPointsOn2.resize(output_cm->mNumContactPoints);
  718. Mat44 local_transform_body2 = transform_body2.PostTranslated(-manifold.mBaseOffset).ToMat44();
  719. float penetration_depth = -FLT_MAX;
  720. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  721. {
  722. const CachedContactPoint &ccp = output_cm->mContactPoints[i];
  723. manifold.mRelativeContactPointsOn1[i] = transform_body1.Multiply3x3(Vec3::sLoadFloat3Unsafe(ccp.mPosition1));
  724. manifold.mRelativeContactPointsOn2[i] = local_transform_body2 * Vec3::sLoadFloat3Unsafe(ccp.mPosition2);
  725. penetration_depth = max(penetration_depth, (manifold.mRelativeContactPointsOn1[0] - manifold.mRelativeContactPointsOn2[0]).Dot(world_space_normal));
  726. }
  727. manifold.mPenetrationDepth = penetration_depth; // We don't have the penetration depth anymore, estimate it
  728. // Notify callback
  729. mContactListener->OnContactPersisted(*body1, *body2, manifold, settings);
  730. }
  731. JPH_ASSERT(settings.mIsSensor || !(body1->IsSensor() || body2->IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  732. if (!settings.mIsSensor // If one of the bodies is a sensor, don't actually create the constraint
  733. && ((body1->IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  734. || (body2->IsDynamic() && settings.mInvMassScale2 != 0.0f)))
  735. {
  736. // Add contact constraint in world space for the solver
  737. uint32 constraint_idx = mNumConstraints++;
  738. if (constraint_idx >= mMaxConstraints)
  739. {
  740. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  741. break;
  742. }
  743. // A constraint will be created
  744. outConstraintCreated = true;
  745. ContactConstraint &constraint = mConstraints[constraint_idx];
  746. new (&constraint) ContactConstraint();
  747. constraint.mBody1 = body1;
  748. constraint.mBody2 = body2;
  749. constraint.mSortKey = input_hash;
  750. world_space_normal.StoreFloat3(&constraint.mWorldSpaceNormal);
  751. constraint.mCombinedFriction = settings.mCombinedFriction;
  752. constraint.mInvMassScale1 = settings.mInvMassScale1;
  753. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  754. constraint.mInvMassScale2 = settings.mInvMassScale2;
  755. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  756. constraint.mContactPoints.resize(output_cm->mNumContactPoints);
  757. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  758. {
  759. CachedContactPoint &ccp = output_cm->mContactPoints[i];
  760. WorldContactPoint &wcp = constraint.mContactPoints[i];
  761. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp.mNonPenetrationLambda);
  762. wcp.mFrictionConstraint1.SetTotalLambda(ccp.mFrictionLambda[0]);
  763. wcp.mFrictionConstraint2.SetTotalLambda(ccp.mFrictionLambda[1]);
  764. wcp.mContactPoint = &ccp;
  765. }
  766. JPH_DET_LOG("GetContactsFromCache: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  767. // Calculate friction and non-penetration constraint properties for all contact points
  768. CalculateFrictionAndNonPenetrationConstraintProperties(constraint, settings, delta_time, transform_body1, transform_body2, *body1, *body2);
  769. // Notify island builder
  770. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  771. #ifdef JPH_DEBUG_RENDERER
  772. // Draw the manifold
  773. if (sDrawContactManifolds)
  774. constraint.Draw(DebugRenderer::sInstance, Color::sYellow);
  775. #endif // JPH_DEBUG_RENDERER
  776. }
  777. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  778. input_cm.mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  779. // Fetch the next manifold
  780. input_handle = input_cm.mNextWithSameBodyPair;
  781. }
  782. while (input_handle != ManifoldMap::cInvalidHandle);
  783. output_cbp->mFirstCachedManifold = output_handle;
  784. }
  785. ContactConstraintManager::BodyPairHandle ContactConstraintManager::AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2)
  786. {
  787. JPH_PROFILE_FUNCTION();
  788. // Swap bodies so that body 1 id < body 2 id
  789. const Body *body1, *body2;
  790. if (inBody1.GetID() < inBody2.GetID())
  791. {
  792. body1 = &inBody1;
  793. body2 = &inBody2;
  794. }
  795. else
  796. {
  797. body1 = &inBody2;
  798. body2 = &inBody1;
  799. }
  800. // Add an entry
  801. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  802. uint64 body_pair_hash = body_pair_key.GetHash();
  803. BPKeyValue *body_pair_kv = mCache[mCacheWriteIdx].Create(ioContactAllocator, body_pair_key, body_pair_hash);
  804. if (body_pair_kv == nullptr)
  805. return nullptr; // Out of cache space
  806. CachedBodyPair *cbp = &body_pair_kv->GetValue();
  807. cbp->mFirstCachedManifold = ManifoldMap::cInvalidHandle;
  808. // Get relative translation
  809. Quat inv_r1 = body1->GetRotation().Conjugated();
  810. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  811. // Store it
  812. delta_position.StoreFloat3(&cbp->mDeltaPosition);
  813. // Determine relative orientation
  814. Quat delta_rotation = inv_r1 * body2->GetRotation();
  815. // Store it
  816. delta_rotation.StoreFloat3(&cbp->mDeltaRotation);
  817. return cbp;
  818. }
  819. template <EMotionType Type1, EMotionType Type2>
  820. bool ContactConstraintManager::TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  821. {
  822. // Calculate hash
  823. SubShapeIDPair key { inBody1.GetID(), inManifold.mSubShapeID1, inBody2.GetID(), inManifold.mSubShapeID2 };
  824. uint64 key_hash = key.GetHash();
  825. // Determine number of contact points
  826. int num_contact_points = (int)inManifold.mRelativeContactPointsOn1.size();
  827. JPH_ASSERT(num_contact_points <= MaxContactPoints);
  828. JPH_ASSERT(num_contact_points == (int)inManifold.mRelativeContactPointsOn2.size());
  829. // Reserve space for new contact cache entry
  830. // Note that for dynamic vs dynamic we always require the first body to have a lower body id to get a consistent key
  831. // under which to look up the contact
  832. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  833. MKeyValue *new_manifold_kv = write_cache.Create(ioContactAllocator, key, key_hash, num_contact_points);
  834. if (new_manifold_kv == nullptr)
  835. return false; // Out of cache space
  836. CachedManifold *new_manifold = &new_manifold_kv->GetValue();
  837. // Transform the world space normal to the space of body 2 (this is usually the static body)
  838. RMat44 inverse_transform_body2 = inBody2.GetInverseCenterOfMassTransform();
  839. inverse_transform_body2.Multiply3x3(inManifold.mWorldSpaceNormal).Normalized().StoreFloat3(&new_manifold->mContactNormal);
  840. // Settings object that gets passed to the callback
  841. ContactSettings settings;
  842. settings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  843. settings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  844. settings.mIsSensor = inBody1.IsSensor() || inBody2.IsSensor();
  845. // Get the contact points for the old cache entry
  846. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  847. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  848. const CachedContactPoint *ccp_start;
  849. const CachedContactPoint *ccp_end;
  850. if (old_manifold_kv != nullptr)
  851. {
  852. // Call point persisted listener
  853. if (mContactListener != nullptr)
  854. mContactListener->OnContactPersisted(inBody1, inBody2, inManifold, settings);
  855. // Fetch the contact points from the old manifold
  856. const CachedManifold *old_manifold = &old_manifold_kv->GetValue();
  857. ccp_start = old_manifold->mContactPoints;
  858. ccp_end = ccp_start + old_manifold->mNumContactPoints;
  859. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  860. old_manifold->mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  861. }
  862. else
  863. {
  864. // Call point added listener
  865. if (mContactListener != nullptr)
  866. mContactListener->OnContactAdded(inBody1, inBody2, inManifold, settings);
  867. // No contact points available from old manifold
  868. ccp_start = nullptr;
  869. ccp_end = nullptr;
  870. }
  871. // Get inverse transform for body 1
  872. RMat44 inverse_transform_body1 = inBody1.GetInverseCenterOfMassTransform();
  873. bool contact_constraint_created = false;
  874. // If one of the bodies is a sensor, don't actually create the constraint
  875. JPH_ASSERT(settings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  876. if (settings.mIsSensor)
  877. {
  878. // Store the contact manifold in the cache
  879. for (int i = 0; i < num_contact_points; ++i)
  880. {
  881. // Convert to local space to the body
  882. Vec3 p1 = Vec3(inverse_transform_body1 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i]));
  883. Vec3 p2 = Vec3(inverse_transform_body2 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i]));
  884. // Create new contact point
  885. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  886. p1.StoreFloat3(&cp.mPosition1);
  887. p2.StoreFloat3(&cp.mPosition2);
  888. // We don't use this, but reset them anyway for determinism check
  889. cp.mNonPenetrationLambda = 0.0f;
  890. cp.mFrictionLambda[0] = 0.0f;
  891. cp.mFrictionLambda[1] = 0.0f;
  892. }
  893. }
  894. else if ((inBody1.IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  895. || (inBody2.IsDynamic() && settings.mInvMassScale2 != 0.0f))
  896. {
  897. // Add contact constraint
  898. uint32 constraint_idx = mNumConstraints++;
  899. if (constraint_idx >= mMaxConstraints)
  900. {
  901. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  902. // Manifold has been created already, we're not filling it in, so we need to reset the contact number of points.
  903. // Note that we don't hook it up to the body pair cache so that it won't be used as a cache during the next simulation.
  904. new_manifold->mNumContactPoints = 0;
  905. return false;
  906. }
  907. // We will create a contact constraint
  908. contact_constraint_created = true;
  909. ContactConstraint &constraint = mConstraints[constraint_idx];
  910. new (&constraint) ContactConstraint();
  911. constraint.mBody1 = &inBody1;
  912. constraint.mBody2 = &inBody2;
  913. constraint.mSortKey = key_hash;
  914. inManifold.mWorldSpaceNormal.StoreFloat3(&constraint.mWorldSpaceNormal);
  915. constraint.mCombinedFriction = settings.mCombinedFriction;
  916. constraint.mInvMassScale1 = settings.mInvMassScale1;
  917. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  918. constraint.mInvMassScale2 = settings.mInvMassScale2;
  919. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  920. JPH_DET_LOG("TemplatedAddContactConstraint: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  921. // Notify island builder
  922. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, inBody1.GetIndexInActiveBodiesInternal(), inBody2.GetIndexInActiveBodiesInternal());
  923. // Get time step
  924. float delta_time = mUpdateContext->mStepDeltaTime;
  925. // Calculate scaled mass and inertia
  926. float inv_m1;
  927. Mat44 inv_i1;
  928. if constexpr (Type1 == EMotionType::Dynamic)
  929. {
  930. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  931. inv_m1 = settings.mInvMassScale1 * mp1->GetInverseMass();
  932. inv_i1 = settings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inverse_transform_body1.Transposed3x3());
  933. }
  934. else
  935. {
  936. inv_m1 = 0.0f;
  937. inv_i1 = Mat44::sZero();
  938. }
  939. float inv_m2;
  940. Mat44 inv_i2;
  941. if constexpr (Type2 == EMotionType::Dynamic)
  942. {
  943. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  944. inv_m2 = settings.mInvMassScale2 * mp2->GetInverseMass();
  945. inv_i2 = settings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inverse_transform_body2.Transposed3x3());
  946. }
  947. else
  948. {
  949. inv_m2 = 0.0f;
  950. inv_i2 = Mat44::sZero();
  951. }
  952. // Calculate tangents
  953. Vec3 t1, t2;
  954. constraint.GetTangents(t1, t2);
  955. constraint.mContactPoints.resize(num_contact_points);
  956. for (int i = 0; i < num_contact_points; ++i)
  957. {
  958. // Convert to world space and set positions
  959. WorldContactPoint &wcp = constraint.mContactPoints[i];
  960. RVec3 p1_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i];
  961. RVec3 p2_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i];
  962. // Convert to local space to the body
  963. Vec3 p1_ls = Vec3(inverse_transform_body1 * p1_ws);
  964. Vec3 p2_ls = Vec3(inverse_transform_body2 * p2_ws);
  965. // Check if we have a close contact point from last update
  966. bool lambda_set = false;
  967. for (const CachedContactPoint *ccp = ccp_start; ccp < ccp_end; ccp++)
  968. if (Vec3::sLoadFloat3Unsafe(ccp->mPosition1).IsClose(p1_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq)
  969. && Vec3::sLoadFloat3Unsafe(ccp->mPosition2).IsClose(p2_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq))
  970. {
  971. // Get lambdas from previous frame
  972. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp->mNonPenetrationLambda);
  973. wcp.mFrictionConstraint1.SetTotalLambda(ccp->mFrictionLambda[0]);
  974. wcp.mFrictionConstraint2.SetTotalLambda(ccp->mFrictionLambda[1]);
  975. lambda_set = true;
  976. break;
  977. }
  978. if (!lambda_set)
  979. {
  980. wcp.mNonPenetrationConstraint.SetTotalLambda(0.0f);
  981. wcp.mFrictionConstraint1.SetTotalLambda(0.0f);
  982. wcp.mFrictionConstraint2.SetTotalLambda(0.0f);
  983. }
  984. // Create new contact point
  985. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  986. p1_ls.StoreFloat3(&cp.mPosition1);
  987. p2_ls.StoreFloat3(&cp.mPosition2);
  988. wcp.mContactPoint = &cp;
  989. // Setup velocity constraint
  990. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(delta_time, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1_ws, p2_ws, inManifold.mWorldSpaceNormal, t1, t2, settings, mPhysicsSettings.mMinVelocityForRestitution);
  991. }
  992. #ifdef JPH_DEBUG_RENDERER
  993. // Draw the manifold
  994. if (sDrawContactManifolds)
  995. constraint.Draw(DebugRenderer::sInstance, Color::sOrange);
  996. #endif // JPH_DEBUG_RENDERER
  997. }
  998. // Store cached contact point in body pair cache
  999. CachedBodyPair *cbp = reinterpret_cast<CachedBodyPair *>(inBodyPairHandle);
  1000. new_manifold->mNextWithSameBodyPair = cbp->mFirstCachedManifold;
  1001. cbp->mFirstCachedManifold = write_cache.ToHandle(new_manifold_kv);
  1002. // A contact constraint was added
  1003. return contact_constraint_created;
  1004. }
  1005. bool ContactConstraintManager::AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  1006. {
  1007. JPH_PROFILE_FUNCTION();
  1008. JPH_DET_LOG("AddContactConstraint: id1: " << inBody1.GetID() << " id2: " << inBody2.GetID()
  1009. << " subshape1: " << inManifold.mSubShapeID1 << " subshape2: " << inManifold.mSubShapeID2
  1010. << " normal: " << inManifold.mWorldSpaceNormal << " pendepth: " << inManifold.mPenetrationDepth);
  1011. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1012. // Swap bodies so that body 1 id < body 2 id
  1013. const ContactManifold *manifold;
  1014. Body *body1, *body2;
  1015. ContactManifold temp;
  1016. if (inBody2.GetID() < inBody1.GetID())
  1017. {
  1018. body1 = &inBody2;
  1019. body2 = &inBody1;
  1020. temp = inManifold.SwapShapes();
  1021. manifold = &temp;
  1022. }
  1023. else
  1024. {
  1025. body1 = &inBody1;
  1026. body2 = &inBody2;
  1027. manifold = &inManifold;
  1028. }
  1029. // Dispatch to the correct templated form
  1030. // Note: Non-dynamic vs non-dynamic can happen in this case due to one body being a sensor, so we need to have an extended switch case here
  1031. switch (body1->GetMotionType())
  1032. {
  1033. case EMotionType::Dynamic:
  1034. {
  1035. switch (body2->GetMotionType())
  1036. {
  1037. case EMotionType::Dynamic:
  1038. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1039. case EMotionType::Kinematic:
  1040. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1041. case EMotionType::Static:
  1042. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1043. default:
  1044. JPH_ASSERT(false);
  1045. break;
  1046. }
  1047. break;
  1048. }
  1049. case EMotionType::Kinematic:
  1050. switch (body2->GetMotionType())
  1051. {
  1052. case EMotionType::Dynamic:
  1053. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1054. case EMotionType::Kinematic:
  1055. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1056. case EMotionType::Static:
  1057. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1058. default:
  1059. JPH_ASSERT(false);
  1060. break;
  1061. }
  1062. break;
  1063. case EMotionType::Static:
  1064. switch (body2->GetMotionType())
  1065. {
  1066. case EMotionType::Dynamic:
  1067. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1068. case EMotionType::Kinematic:
  1069. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1070. case EMotionType::Static: // Static vs static not possible
  1071. default:
  1072. JPH_ASSERT(false);
  1073. break;
  1074. }
  1075. break;
  1076. default:
  1077. JPH_ASSERT(false);
  1078. break;
  1079. }
  1080. return false;
  1081. }
  1082. void ContactConstraintManager::OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings)
  1083. {
  1084. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1085. // Calculate contact settings
  1086. outSettings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1087. outSettings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1088. outSettings.mIsSensor = false; // For now, no sensors are supported during CCD
  1089. // The remainder of this function only deals with calling contact callbacks, if there's no contact callback we also don't need to do this work
  1090. if (mContactListener != nullptr)
  1091. {
  1092. // Swap bodies so that body 1 id < body 2 id
  1093. const ContactManifold *manifold;
  1094. const Body *body1, *body2;
  1095. ContactManifold temp;
  1096. if (inBody2.GetID() < inBody1.GetID())
  1097. {
  1098. body1 = &inBody2;
  1099. body2 = &inBody1;
  1100. temp = inManifold.SwapShapes();
  1101. manifold = &temp;
  1102. }
  1103. else
  1104. {
  1105. body1 = &inBody1;
  1106. body2 = &inBody2;
  1107. manifold = &inManifold;
  1108. }
  1109. // Calculate hash
  1110. SubShapeIDPair key { body1->GetID(), manifold->mSubShapeID1, body2->GetID(), manifold->mSubShapeID2 };
  1111. uint64 key_hash = key.GetHash();
  1112. // Check if we already created this contact this physics update
  1113. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  1114. MKVAndCreated new_manifold_kv = write_cache.FindOrCreate(ioContactAllocator, key, key_hash, 0);
  1115. if (new_manifold_kv.second)
  1116. {
  1117. // This contact is new for this physics update, check if previous update we already had this contact.
  1118. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1119. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  1120. if (old_manifold_kv == nullptr)
  1121. {
  1122. // New contact
  1123. mContactListener->OnContactAdded(*body1, *body2, *manifold, outSettings);
  1124. }
  1125. else
  1126. {
  1127. // Existing contact
  1128. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1129. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  1130. old_manifold_kv->GetValue().mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  1131. }
  1132. // Check if the cache is full
  1133. if (new_manifold_kv.first != nullptr)
  1134. {
  1135. // We don't store any contact points in this manifold as it is not for caching impulses, we only need to know that the contact was created
  1136. CachedManifold &new_manifold = new_manifold_kv.first->GetValue();
  1137. new_manifold.mContactNormal = { 0, 0, 0 };
  1138. new_manifold.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  1139. }
  1140. }
  1141. else
  1142. {
  1143. // Already found this contact this physics update.
  1144. // Note that we can trigger OnContactPersisted multiple times per physics update, but otherwise we have no way of obtaining the settings
  1145. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1146. }
  1147. // If we swapped body1 and body2 we need to swap the mass scales back
  1148. if (manifold == &temp)
  1149. {
  1150. swap(outSettings.mInvMassScale1, outSettings.mInvMassScale2);
  1151. swap(outSettings.mInvInertiaScale1, outSettings.mInvInertiaScale2);
  1152. // Note we do not need to negate the relative surface velocity as it is not applied by the CCD collision constraint
  1153. }
  1154. }
  1155. JPH_ASSERT(outSettings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  1156. }
  1157. void ContactConstraintManager::SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const
  1158. {
  1159. JPH_PROFILE_FUNCTION();
  1160. QuickSort(inConstraintIdxBegin, inConstraintIdxEnd, [this](uint32 inLHS, uint32 inRHS) {
  1161. const ContactConstraint &lhs = mConstraints[inLHS];
  1162. const ContactConstraint &rhs = mConstraints[inRHS];
  1163. // Most of the time the sort key will be different so we sort on that
  1164. if (lhs.mSortKey != rhs.mSortKey)
  1165. return lhs.mSortKey < rhs.mSortKey;
  1166. // If they're equal we use the IDs of body 1 to order
  1167. if (lhs.mBody1 != rhs.mBody1)
  1168. return lhs.mBody1->GetID() < rhs.mBody1->GetID();
  1169. // If they're still equal we use the IDs of body 2 to order
  1170. if (lhs.mBody2 != rhs.mBody2)
  1171. return lhs.mBody2->GetID() < rhs.mBody2->GetID();
  1172. JPH_ASSERT(inLHS == inRHS, "Hash collision, ordering will be inconsistent");
  1173. return false;
  1174. });
  1175. }
  1176. void ContactConstraintManager::FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  1177. {
  1178. JPH_PROFILE_FUNCTION();
  1179. #ifdef JPH_ENABLE_ASSERTS
  1180. // Mark cache as finalized
  1181. ManifoldCache &old_write_cache = mCache[mCacheWriteIdx];
  1182. old_write_cache.Finalize();
  1183. // Check that the count of body pairs and manifolds that we tracked outside of the cache (to avoid contention on an atomic) is correct
  1184. JPH_ASSERT(old_write_cache.GetNumBodyPairs() == inExpectedNumBodyPairs);
  1185. JPH_ASSERT(old_write_cache.GetNumManifolds() == inExpectedNumManifolds);
  1186. #endif
  1187. // Buffers are now complete, make write buffer the read buffer
  1188. mCacheWriteIdx ^= 1;
  1189. // Get the old read cache / new write cache
  1190. ManifoldCache &old_read_cache = mCache[mCacheWriteIdx];
  1191. // Call the contact point removal callbacks
  1192. if (mContactListener != nullptr)
  1193. old_read_cache.ContactPointRemovedCallbacks(mContactListener);
  1194. // We're done with the old read cache now
  1195. old_read_cache.Clear();
  1196. // Use the amount of contacts from the last iteration to determine the amount of buckets to use in the hash map for the next iteration
  1197. old_read_cache.Prepare(inExpectedNumBodyPairs, inExpectedNumManifolds);
  1198. }
  1199. bool ContactConstraintManager::WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const
  1200. {
  1201. // The body pair needs to be in the cache and it needs to have a manifold (otherwise it's just a record indicating that there are no collisions)
  1202. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1203. BodyPair key;
  1204. if (inBody1ID < inBody2ID)
  1205. key = BodyPair(inBody1ID, inBody2ID);
  1206. else
  1207. key = BodyPair(inBody2ID, inBody1ID);
  1208. uint64 key_hash = key.GetHash();
  1209. const BPKeyValue *kv = read_cache.Find(key, key_hash);
  1210. return kv != nullptr && kv->GetValue().mFirstCachedManifold != ManifoldMap::cInvalidHandle;
  1211. }
  1212. template <EMotionType Type1, EMotionType Type2>
  1213. JPH_INLINE void ContactConstraintManager::sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio)
  1214. {
  1215. // Calculate tangents
  1216. Vec3 t1, t2;
  1217. ioConstraint.GetTangents(t1, t2);
  1218. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1219. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1220. {
  1221. // Warm starting: Apply impulse from last frame
  1222. if (wcp.mFrictionConstraint1.IsActive())
  1223. {
  1224. JPH_ASSERT(wcp.mFrictionConstraint2.IsActive());
  1225. wcp.mFrictionConstraint1.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1, inWarmStartImpulseRatio);
  1226. wcp.mFrictionConstraint2.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2, inWarmStartImpulseRatio);
  1227. }
  1228. wcp.mNonPenetrationConstraint.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, ws_normal, inWarmStartImpulseRatio);
  1229. }
  1230. }
  1231. void ContactConstraintManager::WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio)
  1232. {
  1233. JPH_PROFILE_FUNCTION();
  1234. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1235. {
  1236. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1237. // Fetch bodies
  1238. Body &body1 = *constraint.mBody1;
  1239. EMotionType motion_type1 = body1.GetMotionType();
  1240. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1241. Body &body2 = *constraint.mBody2;
  1242. EMotionType motion_type2 = body2.GetMotionType();
  1243. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1244. // Dispatch to the correct templated form
  1245. // Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
  1246. if (motion_type1 == EMotionType::Dynamic)
  1247. {
  1248. if (motion_type2 == EMotionType::Dynamic)
  1249. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1250. else
  1251. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1252. }
  1253. else
  1254. {
  1255. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1256. sWarmStartConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1257. }
  1258. }
  1259. }
  1260. template <EMotionType Type1, EMotionType Type2>
  1261. JPH_INLINE bool ContactConstraintManager::sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2)
  1262. {
  1263. bool any_impulse_applied = false;
  1264. // Calculate tangents
  1265. Vec3 t1, t2;
  1266. ioConstraint.GetTangents(t1, t2);
  1267. // First apply all friction constraints (non-penetration is more important than friction)
  1268. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1269. {
  1270. // Check if friction is enabled
  1271. if (wcp.mFrictionConstraint1.IsActive())
  1272. {
  1273. JPH_ASSERT(wcp.mFrictionConstraint2.IsActive());
  1274. // Calculate impulse to stop motion in tangential direction
  1275. float lambda1 = wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1);
  1276. float lambda2 = wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2);
  1277. float total_lambda_sq = Square(lambda1) + Square(lambda2);
  1278. // Calculate max impulse that can be applied. Note that we're using the non-penetration impulse from the previous iteration here.
  1279. // We do this because non-penetration is more important so is solved last (the last things that are solved in an iterative solver
  1280. // contribute the most).
  1281. float max_lambda_f = ioConstraint.mCombinedFriction * wcp.mNonPenetrationConstraint.GetTotalLambda();
  1282. // If the total lambda that we will apply is too large, scale it back
  1283. if (total_lambda_sq > Square(max_lambda_f))
  1284. {
  1285. float scale = max_lambda_f / sqrt(total_lambda_sq);
  1286. lambda1 *= scale;
  1287. lambda2 *= scale;
  1288. }
  1289. // Apply the friction impulse
  1290. if (wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1, lambda1))
  1291. any_impulse_applied = true;
  1292. if (wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2, lambda2))
  1293. any_impulse_applied = true;
  1294. }
  1295. }
  1296. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1297. // Then apply all non-penetration constraints
  1298. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1299. {
  1300. // Solve non penetration velocities
  1301. if (wcp.mNonPenetrationConstraint.TemplatedSolveVelocityConstraint<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, ws_normal, 0.0f, FLT_MAX))
  1302. any_impulse_applied = true;
  1303. }
  1304. return any_impulse_applied;
  1305. }
  1306. bool ContactConstraintManager::SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1307. {
  1308. JPH_PROFILE_FUNCTION();
  1309. bool any_impulse_applied = false;
  1310. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1311. {
  1312. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1313. // Fetch bodies
  1314. Body &body1 = *constraint.mBody1;
  1315. EMotionType motion_type1 = body1.GetMotionType();
  1316. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1317. Body &body2 = *constraint.mBody2;
  1318. EMotionType motion_type2 = body2.GetMotionType();
  1319. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1320. // Dispatch to the correct templated form
  1321. switch (motion_type1)
  1322. {
  1323. case EMotionType::Dynamic:
  1324. switch (motion_type2)
  1325. {
  1326. case EMotionType::Dynamic:
  1327. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1328. break;
  1329. case EMotionType::Kinematic:
  1330. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(constraint, motion_properties1, motion_properties2);
  1331. break;
  1332. case EMotionType::Static:
  1333. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2);
  1334. break;
  1335. default:
  1336. JPH_ASSERT(false);
  1337. break;
  1338. }
  1339. break;
  1340. case EMotionType::Kinematic:
  1341. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1342. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1343. break;
  1344. case EMotionType::Static:
  1345. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1346. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1347. break;
  1348. default:
  1349. JPH_ASSERT(false);
  1350. break;
  1351. }
  1352. }
  1353. return any_impulse_applied;
  1354. }
  1355. void ContactConstraintManager::StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const
  1356. {
  1357. // Copy back total applied impulse to cache for the next frame
  1358. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1359. {
  1360. const ContactConstraint &constraint = mConstraints[*constraint_idx];
  1361. for (const WorldContactPoint &wcp : constraint.mContactPoints)
  1362. {
  1363. wcp.mContactPoint->mNonPenetrationLambda = wcp.mNonPenetrationConstraint.GetTotalLambda();
  1364. wcp.mContactPoint->mFrictionLambda[0] = wcp.mFrictionConstraint1.GetTotalLambda();
  1365. wcp.mContactPoint->mFrictionLambda[1] = wcp.mFrictionConstraint2.GetTotalLambda();
  1366. }
  1367. }
  1368. }
  1369. bool ContactConstraintManager::SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1370. {
  1371. JPH_PROFILE_FUNCTION();
  1372. bool any_impulse_applied = false;
  1373. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1374. {
  1375. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1376. // Fetch bodies
  1377. Body &body1 = *constraint.mBody1;
  1378. Body &body2 = *constraint.mBody2;
  1379. // Get transforms
  1380. RMat44 transform1 = body1.GetCenterOfMassTransform();
  1381. RMat44 transform2 = body2.GetCenterOfMassTransform();
  1382. Vec3 ws_normal = constraint.GetWorldSpaceNormal();
  1383. for (WorldContactPoint &wcp : constraint.mContactPoints)
  1384. {
  1385. // Calculate new contact point positions in world space (the bodies may have moved)
  1386. RVec3 p1 = transform1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  1387. RVec3 p2 = transform2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  1388. // Calculate separation along the normal (negative if interpenetrating)
  1389. // Allow a little penetration by default (PhysicsSettings::mPenetrationSlop) to avoid jittering between contact/no-contact which wipes out the contact cache and warm start impulses
  1390. // Clamp penetration to a max PhysicsSettings::mMaxPenetrationDistance so that we don't apply a huge impulse if we're penetrating a lot
  1391. float separation = max(Vec3(p2 - p1).Dot(ws_normal) + mPhysicsSettings.mPenetrationSlop, -mPhysicsSettings.mMaxPenetrationDistance);
  1392. // Only enforce constraint when separation < 0 (otherwise we're apart)
  1393. if (separation < 0.0f)
  1394. {
  1395. // Update constraint properties (bodies may have moved)
  1396. wcp.CalculateNonPenetrationConstraintProperties(body1, constraint.mInvMassScale1, constraint.mInvInertiaScale1, body2, constraint.mInvMassScale2, constraint.mInvInertiaScale2, p1, p2, ws_normal);
  1397. // Solve position errors
  1398. if (wcp.mNonPenetrationConstraint.SolvePositionConstraint(body1, body2, ws_normal, separation, mPhysicsSettings.mBaumgarte))
  1399. any_impulse_applied = true;
  1400. }
  1401. }
  1402. }
  1403. return any_impulse_applied;
  1404. }
  1405. void ContactConstraintManager::RecycleConstraintBuffer()
  1406. {
  1407. // Reset constraint array
  1408. mNumConstraints = 0;
  1409. }
  1410. void ContactConstraintManager::FinishConstraintBuffer()
  1411. {
  1412. // Free constraints buffer
  1413. mUpdateContext->mTempAllocator->Free(mConstraints, mMaxConstraints * sizeof(ContactConstraint));
  1414. mConstraints = nullptr;
  1415. mNumConstraints = 0;
  1416. // Reset update context
  1417. mUpdateContext = nullptr;
  1418. }
  1419. void ContactConstraintManager::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  1420. {
  1421. mCache[mCacheWriteIdx ^ 1].SaveState(inStream, inFilter);
  1422. }
  1423. bool ContactConstraintManager::RestoreState(StateRecorder &inStream)
  1424. {
  1425. bool success = mCache[mCacheWriteIdx].RestoreState(mCache[mCacheWriteIdx ^ 1], inStream);
  1426. mCacheWriteIdx ^= 1;
  1427. mCache[mCacheWriteIdx].Clear();
  1428. return success;
  1429. }
  1430. JPH_NAMESPACE_END